留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨噬细胞在创面愈合中的调节作用及其相关机制

贺伟峰 闫凌峰

贺伟峰, 闫凌峰. 巨噬细胞在创面愈合中的调节作用及其相关机制[J]. 中华烧伤与创面修复杂志, 2023, 39(2): 106-113. DOI: 10.3760/cma.j.cn501225-20230110-00010.
引用本文: 贺伟峰, 闫凌峰. 巨噬细胞在创面愈合中的调节作用及其相关机制[J]. 中华烧伤与创面修复杂志, 2023, 39(2): 106-113. DOI: 10.3760/cma.j.cn501225-20230110-00010.
He WF,Yan LF.The regulatory role and related mechanisms of macrophages in wound healing[J].Chin J Burns Wounds,2023,39(2):106-113.DOI: 10.3760/cma.j.cn501225-20230110-00010.
Citation: He WF,Yan LF.The regulatory role and related mechanisms of macrophages in wound healing[J].Chin J Burns Wounds,2023,39(2):106-113.DOI: 10.3760/cma.j.cn501225-20230110-00010.

巨噬细胞在创面愈合中的调节作用及其相关机制

doi: 10.3760/cma.j.cn501225-20230110-00010
基金项目: 

国家自然科学基金面上项目 31872742, 82172232

军队医学科技青年培育计划 20QNPY024

陆军军医大学科技创新能力提升专项 2019XQY12

详细信息
    通讯作者:

    贺伟峰,Email:heweifeng7412@aliyun.com

The regulatory role and related mechanisms of macrophages in wound healing

Funds: 

General Program of National Natural Science Foundation of China 31872742, 82172232

Military Medical Science and Technology Youth Training Program 20QNPY024

Special Project for Enhancing Science and Technology Innovation Ability of Army Medical University 2019XQY12

More Information
  • 摘要: 创面愈合是一个被精准调控的复杂过程,包含了炎症、抗炎、再生等多个阶段。由于巨噬细胞具有明显的可塑性,可以在具有差异化的创面愈合过程中发挥重要的调节作用。巨噬细胞若未能适时表达特定功能,将会影响组织的愈合功能并导致组织病理性愈合。因此,了解巨噬细胞在创面愈合的不同阶段发挥的不同功能并进行针对性调控,对促进创伤组织的愈合再生有重要意义。该文根据创面愈合的基本过程,阐述了创面内不同类型巨噬细胞发挥的不同功能及其基本机制,并强调了未来可能应用于临床治疗的巨噬细胞调控策略。

     

  • [1] BoniakowskiAE, KimballAS, JacobsBN,et al. Macrophage-mediated inflammation in normal and diabetic wound healing[J].J Immunol,2017,199(1):17-24. DOI: 10.4049/jimmunol.1700223.
    [2] NobsSP, KopfM. Tissue-resident macrophages: guardians of organ homeostasis[J].Trends Immunol,2021,42(6):495-507. DOI: 10.1016/j.it.2021.04.007.
    [3] ChakarovS, LimHY, TanL,et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches[J].Science,2019,363(6432):eaau0964.DOI: 10.1126/science.aau0964.
    [4] YapJ, IreiJ, Lozano-GeronaJ,et al. Macrophages in cardiac remodelling after myocardial infarction[J].Nat Rev Cardiol,2023.DOI: 10.1038/s41569-022-00823-5.
    [5] WynnTA and VannellaKM. Macrophages in tissue repair, regeneration, and fibrosis[J].Immunity,2016,44(3):450-462. DOI: 10.1016/j.immuni.2016.02.015.
    [6] FunesSC, RiosM, Escobar-VeraJ,et al. Implications of macrophage polarization in autoimmunity[J].Immunology,2018,154(2):186-195. DOI: 10.1111/imm.12910.
    [7] ZindelJ, KubesP. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation[J].Annu Rev Pathol,2020,15:493-518. DOI: 10.1146/annurev-pathmechdis-012419-032847.
    [8] BakogiannisC, SachseM, StamatelopoulosK,et al. Platelet-derived chemokines in inflammation and atherosclerosis[J].Cytokine,2019,122:154157. DOI: 10.1016/j.cyto.2017.09.013.
    [9] HassanshahiA, MoradzadM, GhalamkariS,et al. Macrophage-mediated inflammation in skin wound healing[J].Cells,2022,11(19) :2953.DOI: 10.3390/cells11192953.
    [10] FountainA, InpanathanS, AlvesP,et al. Phagosome maturation in macrophages: eat, digest, adapt, and repeat[J].Adv Biol Regul,2021,82:100832. DOI: 10.1016/j.jbior.2021.100832.
    [11] GengJ, ShiY, ZhangJ,et al. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection[J].Nat Commun,2021,12(1):3519. DOI: 10.1038/s41467-021-23683-y.
    [12] XuX, PiaoHN, AosaiF,et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/ NF-κB and TNF-α/TNFR1/ NF-κB pathways[J].Br J Pharmacol,2020,177(22):5224-5245. DOI: 10.1111/bph.15261.
    [13] ZumerleS, CalìB, MunariF,et al. Intercellular calcium signaling induced by ATP potentiates macrophage phagocytosis[J].Cell Rep,2019,27(1):1-10.e4. DOI: 10.1016/j.celrep.2019.03.011.
    [14] ChenW, LiuY, ChenJ,et al. The Notch signaling pathway regulates macrophage polarization in liver diseases[J].Int Immunopharmacol,2021,99:107938. DOI: 10.1016/j.intimp.2021.107938.
    [15] YunnaC, MengruH, LeiW,et al. Macrophage M1/M2 polarization[J].Eur J Pharmacol,2020,877:173090. DOI: 10.1016/j.ejphar.2020.173090.
    [16] McCubbreyAL, McManusSA, McClendonJD,et al. Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells[J].Cell Rep,2022,38(2):110222. DOI: 10.1016/j.celrep.2021.110222.
    [17] Greenlee-WackerMC. Clearance of apoptotic neutrophils and resolution of inflammation[J].Immunol Rev,2016,273(1):357-370. DOI: 10.1111/imr.12453.
    [18] LaskinDL,MalaviyaR, LaskinJD. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants[J].Toxicol Sci,2019,168(2):287-301. DOI: 10.1093/toxsci/kfy309.
    [19] WuH, ZhengJ, XuS,et al. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury[J].J Neuroinflammation,2021,18(1):2. DOI: 10.1186/s12974-020-02041-7.
    [20] ShouvalDS, BiswasA, GoettelJA,et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function[J].Immunity,2014,40(5):706-719. DOI: 10.1016/j.immuni.2014.03.011.
    [21] ArnoldL, HenryA, PoronF,et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[J].J Exp Med,2007,204(5):1057-1069. DOI: 10.1084/jem.20070075.
    [22] BouhlelMA, DerudasB, RigamontiE,et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties[J].Cell Metab,2007,6(2):137-143. DOI: 10.1016/j.cmet.2007.06.010.
    [23] BaoL, DouG, TianR,et al. Engineered neutrophil apoptotic bodies ameliorate myocardial infarction by promoting macrophage efferocytosis and inflammation resolution[J].Bioact Mater,2022,9:183-197. DOI: 10.1016/j.bioactmat.2021.08.008.
    [24] HilgendorfI, GerhardtLM, TanTC,et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium[J].Circ Res,2014,114(10):1611-1622. DOI: 10.1161/circresaha.114.303204.
    [25] WangX, CaoQ, YuL,et al. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity[J].JCI Insight,2016,1(19):e87748. DOI: 10.1172/jci.insight.87748.
    [26] MullicanSE, GaddisCA, AlenghatT,et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation[J].Genes Dev,2011,25(23):2480-2488. DOI: 10.1101/gad.175950.111.
    [27] CurtaleG,RubinoM, LocatiM. MicroRNAs as molecular switches in macrophage activation[J].Front Immunol,2019,10:799. DOI: 10.3389/fimmu.2019.00799.
    [28] BernshteinB, CuratoC, IoannouM,et al. IL-23-producing IL-10Rα-deficient gut macrophages elicit an IL-22-driven proinflammatory epithelial cell response[J].Sci Immunol,2019,4(36):eaau6571. DOI: 10.1126/sciimmunol.aau6571.
    [29] JungM, MaY, IyerRP,et al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation[J].Basic Res Cardiol,2017,112(3):33. DOI: 10.1007/s00395-017-0622-5.
    [30] De NardoD, LabzinLI, KonoH,et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3[J].Nat Immunol,2014,15(2):152-160. DOI: 10.1038/ni.2784.
    [31] WestphalenK, GusarovaGA, IslamMN,et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity[J].Nature,2014,506(7489):503-506. DOI: 10.1038/nature12902.
    [32] JeongH, YoonH, LeeY,et al. SOCS3 attenuates dexamethasone-induced M2 polarization by down-regulation of GILZ via ROS- and p38 MAPK-dependent pathways[J].Immune Netw,2022,22(4):e33. DOI: 10.4110/in.2022.22.e33.
    [33] KimH, WangSY, KwakG,et al. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing[J].Adv Sci (Weinh),2019,6(20):1900513. DOI: 10.1002/advs.201900513.
    [34] WillenborgS, LucasT, van LooG,et al. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair[J].Blood,2012,120(3):613-625. DOI: 10.1182/blood-2012-01-403386.
    [35] MantsoungaCS, LeeC, NeversonJ,et al. Macrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A[J].Cell Rep,2022,38(5):110309. DOI: 10.1016/j.celrep.2022.110309.
    [36] GantaVC, ChoiM, FarberCR,et al. Antiangiogenic VEGF(165)b regulates macrophage polarization via S100A8/S100A9 in peripheral artery disease[J].Circulation,2019,139(2):226-242. DOI: 10.1161/circulationaha.118.034165.
    [37] XiaoH, ZhaoX, LiS,et al. Risk factors for subretinal fibrosis after anti-VEGF treatment of myopic choroidal neovascularisation[J].Br J Ophthalmol,2021,105(1):103-108. DOI: 10.1136/bjophthalmol-2019-315763.
    [38] PakshirP, HinzB. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication[J].Matrix Biol,2018,68-69,81-93. DOI: 10.1016/j.matbio.2018.01.019.
    [39] BorthwickLA, BarronL, HartKM,et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis[J].Mucosal Immunol,2016,9(1):38-55. DOI: 10.1038/mi.2015.34.
    [40] MengXM, WangS, HuangXR,et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis[J].Cell Death Dis,2016,7(12):e2495. DOI: 10.1038/cddis.2016.402.
    [41] TangPC, ChungJY, XueVW,et al. Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition[J].Adv Sci (Weinh),2022,9(1):e2101235. DOI: 10.1002/advs.202101235.
    [42] ShookBA, WaskoRR, Rivera-GonzalezGC,et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair[J].Science,2018,362(6417):eaar2971. DOI: 10.1126/science.aar2971.
    [43] AbeH, TakedaN, IsagawaT,et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M[J].Nat Commun,2019,10(1):2824. DOI: 10.1038/s41467-019-10859-w.
    [44] StutchfieldBM, AntoineDJ, MackinnonAC,et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure[J].Gastroenterology,2015,149(7):1896-1909.e14. DOI: 10.1053/j.gastro.2015.08.053.
    [45] WuDC, KolliparaR, CarterMJ,et al. A novel macrophage-activating gel improves healing and skin quality after CO2 laser resurfacing of the chest[J].Dermatol Surg,2022,48(12):1312-1316. DOI: 10.1097/dss.0000000000003622.
    [46] SchmittH, UlmschneiderJ, BillmeierU,et al. The TLR9 agonist cobitolimod induces IL10-producing wound healing macrophages and regulatory T cells in ulcerative colitis[J].J Crohns Colitis,2020,14(4):508-524. DOI: 10.1093/ecco-jcc/jjz170.
    [47] 李晓亮, 谢江帆, 叶向阳, 等. 非编码RNA调控糖尿病创面愈合机制的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(2): 184-189. DOI: 10.3760/cma.j.cn501225-20221101-00477.
    [48] ZhouLS, ZhaoGL, LiuQ,et al. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model[J].J Inflamm (Lond),2015,12:11. DOI: 10.1186/s12950-015-0053-8.
    [49] WuX, HeW, MuX,et al. Macrophage polarization in diabetic wound healing[J/OL].Burns Trauma,2022,10:tkac051[2023-01-10].https://pubmed.ncbi.nlm.nih.gov/34089902/.DOI: 10.1093/burnst/tkac051.
    [50] LiS, YangP, DingX,et al. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype[J/OL].Burns Trauma,2022,10:tkac046[2023-01-10]. https://pubmed.ncbi.nlm.nih.gov/36568527/.DOI: 10.1093/burnst/tkac046.
    [51] HuangYY, LinCW, ChengNC,et al. Effect of a novel macrophage-regulating drug on wound healing in patients with diabetic foot ulcers: a randomized clinical trial[J].JAMA Netw Open,2021,4(9):e2122607. DOI: 10.1001/jamanetworkopen.2021.22607.
    [52] LopesT, AlmeidaGG, SouzaIA,et al. High-density- immune-complex regulatory macrophages promote recovery of erxperimental colitis in mice[J].Inflammation,2021,44(3):1069-1082. DOI: 10.1007/s10753-020-01403-w.
    [53] MuR, ZhangZ, HanC,et al. Tumor-associated macrophages-educated reparative macrophages promote diabetic wound healing[J].EMBO Mol Med,2023,15(2):e16671. DOI: 10.15252/emmm.202216671.
  • 加载中
图(1)
计量
  • 文章访问数:  2398
  • HTML全文浏览量:  83
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10

目录

    /

    返回文章
    返回