Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host
-
摘要: 铜绿假单胞菌是最常见的烧伤感染创面病原菌,它能够编码多种毒力因子,具有很强的致病性,可导致预后差、病死率高。为了研究对抗铜绿假单胞菌感染的新方法,研究者们观察了其噬菌体与宿主之间广泛的相互作用。噬菌体通过多种机制影响甚至主导宿主细菌的结构、运动、代谢,促进宿主进化,也是影响宿主环境适应性和致病性的重要因素。该文分别从单细胞水平和群体水平对铜绿假单胞菌噬菌体与宿主的相互作用进行了综述。了解这些相互作用可为铜绿假单胞菌临床感染的治疗研究提供新的思路,为未来研发抗菌制剂以及指导烧伤感染治疗提供基础。
-
关键词:
- 铜绿假单胞菌 /
- 细菌噬菌体 /
- 宿主与病原体相互作用 /
- 烧伤 /
- 感染
Abstract: Pseudomonas aeruginosa is the most common pathogen of burn wound infection. It can encode a variety of virulence factors and is highly pathogenic, which can lead to poor prognosis and high mortality. In order to research a new method to combat Pseudomonas aeruginosa infection, researchers have observed a wide range of interactions between the bacteriophages and the host. Bacteriophages influence and even dominate the structure, movement, and metabolism of host bacteria through a variety of mechanisms, catalyze the evolution of the host, and are also an important factor in host environmental adaptability and pathogenicity. In this paper, the interaction between Pseudomonas aeruginosa bacteriophages and the host is reviewed from the single cell level and the population level. Understanding these interactions could provide new idea for the treatment of Pseudomonas aeruginosa clinical infections, provides a basis for future development of antimicrobial agents and guides the treatment of burn infections.-
Key words:
- Pseudomonas aeruginosa /
- Bacterio-phages /
- Host-pathogen interactions /
- Burns /
- Infection
-
参考文献
(41) [1] GongYL, ChenJ, LiuCJ,et al.Comparison of pathogens and antibiotic resistance of burn patients in the burn ICU or in the common burn ward[J].Burns,2014,40(3):402-407.DOI: 10.1016/j.burns.2013.07.010. [2] YinSP,ChenP,YouB,et al.Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese burn center from 2011 to 2016[J].Front Microbiol,2018,9:1135.DOI: 10.3389/fmicb.2018.01135. [3] ThadenJT,ParkLP,MaskarinecSA,et al.Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria[J].Antimicrob Agents Chemother,2017,61(6):e02671-16.DOI: 10.1128/AAC.02671-16. [4] 杨子晨,袁志强,彭毅志.噬菌体免疫作用在脓毒症治疗中的应用研究进展[J].中华烧伤杂志,2019,35(8):630-633.DOI: 10.3760/cma.j.issn.1009-2587.2019.08.019. [5] 彭毅志,杨子晨.噬菌体在脓毒症治疗中的作用[J].中华烧伤杂志, 2020, 36(1): 5-8. DOI: 10.3760/cma.j.issn.1009-2587.2020.01.002. [6] 彭毅志,黄广涛.烧伤细菌感染的噬菌体治疗[J].中华烧伤杂志,2016,32(9):513-516.DOI: 10.3760/cma.j.issn.1009-2587.2016.09.001. [7] FeinerR,ArgovT,RabinovichL,et al.A new perspective on lysogeny: prophages as active regulatory switches of bacteria[J].Nat Rev Microbiol,2015,13(10):641-650.DOI: 10.1038/nrmicro3527. [8] CenensW,MakumiA,GoversSK,et al.Viral transmission dynamics at single-cell resolution reveal transiently immune subpopulations caused by a carrier state association[J].PLoS Genet,2015,11(12):e1005770.DOI: 10.1371/journal.pgen.1005770. [9] SamsonJE,MagadánAH,SabriM,et al.Revenge of the phages: defeating bacterial defences[J].Nat Rev Microbiol,2013,11(10):675-687.DOI: 10.1038/nrmicro3096. [10] LeS,HeXS,TanYL,et al.Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004[J].PLoS One,2013,8(7):e68562.DOI: 10.1371/journal.pone.0068562. [11] GlontiT,ChanishviliN,TaylorPW.Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa[J].J Appl Microbiol,2010,108(2):695-702.DOI: 10.1111/j.1365-2672.2009.04469.x. [12] ChungIY,JangHJ,BaeHW,et al.A phage protein that inhibits the bacterial ATPase required for type Ⅳ pilus assembly[J].Proc Natl Acad Sci U S A,2014,111(31):11503-11508.DOI: 10.1073/pnas.1403537111. [13] WeigeleP,RaleighEA.Biosynthesis and function of modified bases in bacteria and their viruses[J].Chem Rev,2016,116(20):12655-12687.DOI: 10.1021/acs.chemrev.6b00114. [14] GarneauJE,DupuisMÈ,VillionM,et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J].Nature,2010,468(7320):67-71.DOI: 10.1038/nature09523. [15] PawlukA,StaalsRHJ,TaylorC,et al.Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species[J].Nat Microbiol,2016,1(8):16085.DOI: 10.1038/nmicrobiol.2016.85. [16] Bondy-DenomyJ,PawlukA,MaxwellKL,et al.Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J].Nature,2013,493(7432):429-432.DOI: 10.1038/nature11723. [17] CadyKC,Bondy-DenomyJ,HeusslerGE,et al.The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages[J].J Bacteriol,2012,194(21):5728-5738.DOI: 10.1128/JB.01184-12. [18] AliSS,XiaB,LiuJ,et al.Silencing of foreign DNA in bacteria[J].Curr Opin Microbiol,2012,15(2):175-181.DOI: 10.1016/j.mib.2011.12.014. [19] 杨洪江 崔晓莉 尤甲甲 铜绿假单胞菌与噬菌体感染相关基因及应用 CN 105400876 B 2019-06-11 杨洪江,崔晓莉,尤甲甲.铜绿假单胞菌与噬菌体感染相关基因及应用: 中国,CN 105400876 B[P]. 2019-06-11.
[20] Van den BosscheA,CeyssensPJ,De SmetJ,et al.Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa[J].J Proteome Res,2014,13(10):4446-4456.DOI: 10.1021/pr500796n. [21] YakuninaM,ArtamonovaT,BorukhovS,et al.A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage[J].Nucleic Acids Res,2015,43(21):10411-10420.DOI: 10.1093/nar/gkv1095. [22] 杨子晨 噬菌体在烧伤泛耐药细菌感染治疗中的机制研究 重庆 陆军军医大学 2019 杨子晨.噬菌体在烧伤泛耐药细菌感染治疗中的机制研究[D].重庆:陆军军医大学, 2019.
[23] BreitbartM, ThompsonL, SuttleCA, et al. Exploring the vast diversity of marine viruses[J]. Oceanography, 2007, 20(2): 135-139. DOI: 10.5670/oceanog.2007.58. [24] De SmetJ,ZimmermannM,KogadeevaM,et al.High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection[J].ISME J,2016,10(8):1823-1835.DOI: 10.1038/ismej.2016.3. [25] YanoST,Rothman-DenesLB.A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader[J].Mol Microbiol,2011,79(5):1325-1338.DOI: 10.1111/j.1365-2958.2010.07526.x. [26] ErbML,KraemerJA,CokerJK,et al.A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells[J].Elife,2014,3:e03197.DOI: 10.7554/eLife.03197. [27] KoskellaB,BrockhurstMA.Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities[J].FEMS Microbiol Rev,2014,38(5):916-931.DOI: 10.1111/1574-6976.12072. [28] GómezP,BucklingA.Bacteria-phage antagonistic coevolution in soil[J].Science,2011,332(6025):106-109.DOI: 10.1126/science.1198767. [29] HallAR,ScanlanPD,MorganAD,et al.Host-parasite coevolutionary arms races give way to fluctuating selection[J].Ecol Lett,2011,14(7):635-642.DOI: 10.1111/j.1461-0248.2011.01624.x. [30] GorterFA,ScanlanPD,BucklingA.Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments[J].Biol Lett,2016,12(2):20150879.DOI: 10.1098/rsbl.2015.0879. [31] MonsonR,FouldsI,FowerakerJ,et al.The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of 'jumbo' phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients[J].Microbiology (Reading),2011,157(Pt 3):859-867.DOI: 10.1099/mic.0.044701-0. [32] TaylorTB,BucklingA.Bacterial motility confers fitness advantage in the presence of phages[J].J Evol Biol,2013,26(10):2154-2160.DOI: 10.1111/jeb.12214. [33] ScanlanPD,BucklingA.Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25[J].ISME J,2012,6(6):1148-1158.DOI: 10.1038/ismej.2011.174. [34] FrimanVP,BucklingA.Effects of predation on real-time host-parasite coevolutionary dynamics[J].Ecol Lett,2013,16(1):39-46.DOI: 10.1111/ele.12010. [35] FrimanVP,BucklingA.Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities[J].ISME J,2014,8(9):1820-1830.DOI: 10.1038/ismej.2014.40. [36] Bondy-DenomyJ,QianJ,WestraER,et al.Prophages mediate defense against phage infection through diverse mechanisms[J].ISME J,2016,10(12):2854-2866.DOI: 10.1038/ismej.2016.79. [37] AbdallahK,HartmanK,PletzerD,et al.The bacteriophage-derived transcriptional regulator, LscR, activates the expression of levansucrase genes in Pseudomonas syringae[J].Mol Microbiol,2016,102(6):1062-1074.DOI: 10.1111/mmi.13536. [38] LeS,YaoXY,LuSG,et al.Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa[J].Sci Rep,2014,4:4738.DOI: 10.1038/srep04738. [39] TaylorVL,UdaskinML,IslamST,et al.The D3 bacteriophage α-polymerase inhibitor (Iap) peptide disrupts O-antigen biosynthesis through mimicry of the chain length regulator Wzz in Pseudomonas aeruginosa[J].J Bacteriol,2013,195(20):4735-4741.DOI: 10.1128/JB.00903-13. [40] YangZC,YinSP,LiG,et al.Global transcriptomic analysis of the interactions between phage φAbp1 and extensively drug-resistant Acinetobacter baumannii[J].mSystems,2019,4(2):e00068-19.DOI: 10.1128/mSystems.00068-19. [41] ChanBK, SistromM, WertzJE, et al.Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa[J].Scientific Reports,2016,6:26717. DOI: 10.1038/srep26717.
计量
- 文章访问数: 226
- HTML全文浏览量: 310
- PDF下载量: 39
- 被引次数: 0