Citation: | Luo GX,Liu ML.Application of functional materials to promote cutaneous wound healing[J].Chin J Burns,2021,37(11):1005-1010.DOI: 10.3760/cma.j.cn501120-20210930-00340. |
[1] |
World Health Organization. Burns [EB/OL].(2018-03-06)[2021-09-08]. https://www.who.int/en/news-room/fact-sheets/detail/burns. |
[2] |
ChengB,JiangY,FuX,et al.Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: prevention and control[J].Wound Repair Regen,2020,28(5):623-630.DOI: 10.1111/wrr.12825.
|
[3] |
ArmatoU,FreddiG.Editorial: biomaterials for skin wound repair: tissue engineering, guided regeneration, and wound scarring prevention[J].Front Bioeng Biotechnol,2021,9:722327.DOI: 10.3389/fbioe.2021.722327.
|
[4] |
ZhangX,ShuW,YuQ,et al.Functional biomaterials for treatment of chronic wound[J].Front Bioeng Biotechnol,2020,8:516.DOI: 10.3389/fbioe.2020.00516.
|
[5] |
ChenG,YuY,WuX,et al.Wound healing: bioinspired multifunctional hybrid hydrogel promotes wound healing[J/OL]. Adv Funct Mater,2021,28(33):1870233[2021-09-30]. https://doi.org/10.1002/adfm.202105749. doi: 10.1002/adfm.202105749
|
[6] |
TengL,ShaoZW,BaiQ,et al.Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing[J/OL].Adv Funct Mater,2021,31(43):2105628[2021-09-30].https://doi.org/10.1002/adfm.202105628. doi: 10.1002/adfm.202105628
|
[7] |
GuoY,WangY,ZhaoX,et al.Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light[J].Sci Adv,2021,7(29):eabf9635.DOI: 10.1126/sciadv.abf9635.
|
[8] |
BroughtonG,JanisJE,AttingerCE.A brief history of wound care[J].Plast Reconstr Surg,2006,117(Suppl 7):S6-11.DOI: 10.1097/01.prs.0000225429.76355.dd.
|
[9] |
LiuM,LuoG,WangY,et al.Optimization and integration of nanosilver on polycaprolactone nanofibrous mesh for bacterial inhibition and wound healing in vitro and in vivo[J].Int J Nanomedicine,2017,12:6827-6840.DOI: 10.2147/IJN.S140648.
|
[10] |
LiuM,LiuT,ChenX,et al.Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing[J].J Nanobiotechnology,2018,16(1):89.DOI: 10.1186/s12951-018-0416-4.
|
[11] |
LiuM,HeD,YangT,et al.An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy[J].J Nanobiotechnology,2018,16(1):23.DOI: 10.1186/s12951-018-0348-z.
|
[12] |
PengLH,HuangYF,ZhangCZ,et al.Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity[J].Biomaterials,2016,103:137-149.DOI: 10.1016/j.biomaterials.2016.06.057.
|
[13] |
LiuM,LiuT,ZhangX,et al.Fabrication of KR-12 peptide- containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization[J].Int J Nanomedicine,2019,14:3345-3360.DOI: 10.2147/IJN.S199618.
|
[14] |
WangR,LiJ ,ChenW, et al. A biomimetic mussel‐inspired ε‐poly‐L‐lysine hydrogel with robust tissue‐anchor and anti‐infection capacity [J]. Advanced Functional Materials,2017,27(8):1604894. DOI: 10.1002/adfm.201604894.
|
[15] |
LiuT,LiuY,LiuM,et al.Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing[J/OL].Burns Trauma,2018,6:16[2021-09-30].https://pubmed.ncbi.nlm.nih.gov/29796394/.DOI: 10.1186/s41038-018-0115-2.
|
[16] |
YangY,DongZ,LiM,et al.Graphene oxide/copper nanoderivatives-modified chitosan/hyaluronic acid dressings for facilitating wound healing in infected full-thickness skin defects[J].Int J Nanomedicine,2020,15:8231-8247.DOI: 10.2147/IJN.S278631.
|
[17] |
QianW,YanC,HeD,et al.pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection[J].Acta Biomater,2018,69:256-264.DOI: 10.1016/j.actbio.2018.01.022.
|
[18] |
GanD,XuT,XingW,et al.Mussel-inspired contact-active antibacterial hydrogel with high cell affinity, toughness, and recoverability[J/OL].Nat Commun,2019,29(1): 1805964 [2021-09-30].https://onlinelibrary.wiley.com/doi/10.1002/adfm. 201805964. doi: 10.1002/adfm. 201805964
|
[19] |
BoomiP,GanesanR,Prabu PooraniG,et al.Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions[J].Int J Nanomedicine,2020,15:7553-7568.DOI: 10.2147/IJN.S257499.
|
[20] |
OrlowskiP,ZmigrodzkaM,TomaszewskaE,et al.Tannic acid-modified silver nanoparticles for wound healing: the importance of size[J].Int J Nanomedicine,2018,13:991-1007.DOI: 10.2147/IJN.S154797.
|
[21] |
WilkinsonHN,HardmanMJ.Wound healing: cellular mechanisms and pathological outcomes[J].Open Biol,2020,10(9):200223.DOI: 10.1098/rsob.200223.
|
[22] |
NamaziMR, FallahzadehMK, SchwartzRA. Strategies for prevention of scars: what can we learn from fetal skin?[J]. Int J Dermatol,2011,50(1):85-93.DOI: 10.1111/j.1365-4632.2010.04678.x.
|
[23] |
LiuT,XiaoB,XiangF,et al.Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases[J].Nat Commun, 2020,11(1):2788.DOI: 10.1038/s41467-020-16544-7.
|
[24] |
OuQ,ZhangS,FuC,et al.More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing[J].J Nanobiotechnology,2021,19(1):237.DOI: 10.1186/s12951-021-00973-7.
|
[25] |
WangS,YanC,ZhangX,et al.Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing[J].Biomater Sci,2018,6(10):2757-2772.DOI: 10.1039/c8bm00807h.
|
[26] |
LuY,LiH,WangJ,et al.Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing[J/OL]. Adv Funct Mater,2021:2105749[2021-09-30]. https://doi.org/10.1002/adfm.202105749.[published online ahead of print September 1, 2021]. doi: 10.1002/adfm.202105749
|
[27] |
LiY,XuT,TuZ,et al.Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair[J].Theranostics,2020,10(11):4929-4943.DOI: 10.7150/thno.41839.
|
[28] |
ThomasHM,AhangarP,FitridgeR,et al.Plasma-polymerized pericyte patches improve healing of murine wounds through increased angiogenesis and reduced inflammation[J].Regen Biomater,2021,8(4):rbab024.DOI: 10.1093/rb/rbab024.
|
[29] |
WinterGD.Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig[J].Nature,1962,193:293-294.DOI: 10.1038/193293a0.
|
[30] |
HarriesRL,BosanquetDC,HardingKG.Wound bed preparation: TIME for an update[J].Int Wound J,2016,13(Suppl 3):S8-14.DOI: 10.1111/iwj.12662.
|
[31] |
XuR,LuoG,XiaH,et al.Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction[J].Biomaterials,2015,40:1- 11.DOI: 10.1016/j.biomaterials.2014.10.077.
|
[32] |
IacobAT,DrăganM,IonescuOM,et al.An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management[J].Pharmaceutics,2020,12(10):983. DOI: 10.3390/pharmaceutics12100983.
|
[33] |
RazzaqA,KhanZU,SaeedA,et al.Development of cephradine- loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: in-vitro and in-vivo assessments[J].Pharmaceutics,2021,13(3):349. DOI: 10.3390/pharmaceutics13030349.
|
[34] |
LeiH,ZhuC,FanD.Optimization of human-like collagen composite polysaccharide hydrogel dressing preparation using response surface for burn repair[J].Carbohydr Polym,2020,239:116249.DOI: 10.1016/j.carbpol.2020.116249.
|
[35] |
Stone IiR,NatesanS,KowalczewskiCJ,et al.Advancements in regenerative strategies through the continuum of burn care[J].Front Pharmacol,2018,9:672.DOI: 10.3389/fphar.2018.00672.
|
[36] |
CentanniJM,StraseskiJA,WicksA,et al.StrataGraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: results from a prospective, randomized, controlled dose escalation trial[J].Ann Surg,2011,253(4):672-683.DOI: 10.1097/SLA.0b013e318210f3bd.
|
[37] |
SherylR. Stratatech corporation biologics license application (Approval Letter)[EB/OL]. (2021-06-05)[2021-09-30]. https://www.FDA.Gov/media/150131/download. |
1. | 杨思思,李云恒,邓倩,何冲. 西藏高原地区双层人工真皮联合负压封闭引流及自体皮移植修复手指电烧伤致骨及肌腱外露创面1例. 临床军医杂志. 2025(01): 106-107 . ![]() | |
2. | 阮鹏,葛映红,熊梦烨,谭一清,陈曦,孙斯琴. 表观弥散系数定量评估兔肢体高压电烧伤早期肌肉进行性损伤. 中国医学影像技术. 2024(09): 1303-1308 . ![]() | |
3. | 范友芬,潘艳艳,黄能,张淳,晋国营. 大面积高压电击伤致右股动脉破裂出血1例. 中国急救复苏与灾害医学杂志. 2023(04): 556-558+560 . ![]() | |
4. | 杜伟力,沈余明,胡骁骅,覃凤均,程琳. 巨大腹壁下动脉脐旁穿支皮瓣修复腕部环状高压电烧伤创面的临床效果. 中华烧伤与创面修复杂志. 2023(06): 527-533 . ![]() | |
5. | 覃凤均,王成,张颖,杜伟力,贾伟,田轩,沈余明,刘建龙. 游离皮瓣联合血管重建在上肢毁损性创面合并血管损伤修复中的应用. 中国普通外科杂志. 2023(06): 840-849 . ![]() | |
6. | 张庆富,郝嘉文. 高压电烧伤进行性损伤的机制及防治策略. 中华烧伤与创面修复杂志. 2023(08): 718-723 . ![]() | |
7. | 仲海燕,陈勇,杜轩宇,王倩,王慜,邹鸣立,袁斯明. 足踝部高压电烧伤创面修复的带蒂轴型皮瓣选择策略. 中华烧伤与创面修复杂志. 2023(10): 939-946 . ![]() | |
8. | 孙斯琴,郭威,陈军,杨凡. 兔肢体高压电烧伤后骨骼肌MRI特征. 放射学实践. 2022(05): 605-610 . ![]() | |
9. | 贾伟,刘建龙,覃凤均,田轩,蒋鹏,程志远,周也平,王成. 高压电烧伤合并肢体血管损伤治疗10年回顾性分析. 中国普通外科杂志. 2022(06): 760-766 . ![]() | |
10. | 占利民,方林森,孙群,王晨,汪辉,孙恒亮,钱锐. 背阔肌肌皮瓣在恶性肿瘤术后和难愈性创面修复中的临床应用. 中国美容整形外科杂志. 2022(07): 424-427 . ![]() | |
11. | 贾汝福,曹明聪. 2020版日本《结缔组织疾病与血管炎相关皮肤溃疡管理指南》解读. 中华烧伤与创面修复杂志. 2022(12): 1196-1200 . ![]() | |
12. | 阮鹏,孙斯琴,杨凡,雷文峰,郭威. 高压电击伤家兔模型肢体坏死损伤的诊断:基于磁共振成像分析. 分子影像学杂志. 2021(04): 668-672 . ![]() | |
13. | 张颖,沈余明. 腕部高压电烧伤诊治的研究进展. 中华创伤杂志. 2021(05): 467-472 . ![]() | |
14. | 郭威,杨凡,孙斯琴,王潇. 磁共振常规及多b值DWI序列对家兔肢体高压电击伤的诊断. 中国医疗设备. 2021(12): 85-89 . ![]() | |
15. | 张宏图. 四肢血管损伤的彩色多普勒超声声像图特征及诊断准确率探究. 保健医学研究与实践. 2021(S1): 280-282 . ![]() |