Citation: | Hao RN,Ye XL,Xu BL,et al.Application and advances of nanozyme-loaded tissue engineering scaffolds in wound repair[J].Chin J Burns Wounds,2023,39(6):591-595.DOI: 10.3760/cma.j.cn501225-20220806-00337. |
[1] |
OliverS,PhamT,LiY,et al.More than skin deep: using polymers to facilitate topical delivery of nitric oxide[J].Biomater Sci,2021,9(2):391-405.DOI: 10.1039/d0bm01197e.
|
[2] |
ZhangY,JinY,CuiH,et al.Nanozyme-based catalytic theranostics[J].RSC Adv,2019,10(1):10-20.DOI: 10.1039/c9ra09021e.
|
[3] |
LiY,ZhuW,LiJ,et al.Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms[J].Colloids Surf B Biointerfaces,2021,198:111465.DOI: 10.1016/j.colsurfb.2020.111465.
|
[4] |
WangX , HuY , HuiW. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond[J]. Inorg Chem Front, 2016, 3(1): 41-60. DOI: 10.1039/C5QI00240K.
|
[5] |
DongH,FanY,ZhangW,et al.Catalytic mechanisms of nanozymes and their applications in biomedicine[J].Bioconjug Chem,2019,30(5):1273-1296.DOI: 10.1021/acs.bioconjchem.9b00171.
|
[6] |
戈明亮,李越颖,梁国栋.纳米酶在传感检测中的应用研究进展[J].材料导报,2021,35(19):19195-19203.DOI: 10.11896/cldb.20060177.
|
[7] |
WangH,WanK,ShiX.Recent advances in nanozyme research[J].Adv Mater,2019,31(45):e1805368.DOI: 10.1002/adma.201805368.
|
[8] |
李卓轩,封开政,张薇,等.纳米酶的催化机制及应用[J].科学通报,2018,63(21):2128-2139.DOI: 10.1360/N972018-00426.
|
[9] |
YangW, YangX, ZhuL, et al. Nanozymes: activity origin, catalytic mechanism, and biological application[J]. Coordination Chemistry Reviews, 2021, 448: 214170. DOI: 10.1016/j.ccr.2021.214170.
|
[10] |
CelardoI,PedersenJZ,TraversaE,et al.Pharmacological potential of cerium oxide nanoparticles[J].Nanoscale,2011,3(4):1411-1420. DOI: 10.1039/c0nr00875c.
|
[11] |
DaiY, DingY, LiL. Nanozymes for regulation of reactive oxygen species and disease therapy[J]. Chinese Chemical Letters, 2021, 32(9): 2715-2728. DOI: 10.1016/j.cclet.2021.03.036.
|
[12] |
HaoR,CuiZ,ZhangX,et al.Rational design and preparation of functional hydrogels for skin wound healing[J].Front Chem,2021,9:839055.DOI: 10.3389/fchem.2021.839055.
|
[13] |
周紫萱,姜耀男,肖仕初.原位成形可注射水凝胶特性及其促创面愈合作用研究进展[J].中华烧伤杂志,2021,37(1):82-85.DOI: 10.3760/cma.j.cn501120-20200428-00243.
|
[14] |
JinX,ZhangW,ShanJ,et al.Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing[J].ACS Appl Mater Interfaces,2022,14(45):50677-50691.DOI: 10.1021/acsami.2c17242.
|
[15] |
ShenJ,ChenA,CaiZ,et al.Exhausted local lactate accumulation via injectable nanozyme-functionalized hydrogel microsphere for inflammation relief and tissue regeneration[J].Bioact Mater,2022,12:153-168.DOI: 10.1016/j.bioactmat.2021.10.013.
|
[16] |
GulA,GallusI,TegginamathA,et al.Electrospun antibacterial nanomaterials for wound dressings applications[J].Membranes (Basel),2021,11(12):908. DOI: 10.3390/membranes11120908.
|
[17] |
GaoC,ZhangL,WangJ,et al.Electrospun nanofibers promote wound healing: theories, techniques, and perspectives[J].J Mater Chem B,2021,9(14):3106-3130.DOI: 10.1039/d1tb00067e.
|
[18] |
HuM,KorscheltK,DanielP,et al.Fibrous nanozyme dressings with catalase-like activity for h2o2 reduction to promote wound healing[J].ACS Appl Mater Interfaces,2017,9(43):38024-38031.DOI: 10.1021/acsami.7b12212.
|
[19] |
GaoL,ShaabaniS,Reyes RomeroA,et al.Correction: 'chemistry at the speed of sound': automated 1536-well nanoscale synthesis of 16 scaffolds in parallel[J].Green Chem,2023,25(10):4138.DOI: 10.1039/d3gc90037a.
|
[20] |
ZhuW,ChiM,GaoM,et al.Controlled synthesis of titanium dioxide/molybdenum disulfide core-shell hybrid nanofibers with enhanced peroxidase-like activity for colorimetric detection of glutathione[J].J Colloid Interface Sci,2018,528:410-418.DOI: 10.1016/j.jcis.2018.05.068.
|
[21] |
ChenS, ChiM, ZhuY, et al. A facile synthesis of superparamagnetic Fe3O4 nanofibers with superior peroxidase-like catalytic activity for sensitive colorimetric detection of l-cysteine[J]. Applied Surface Science, 2018, 440: 237-244. DOI: 10.1016/j.apsusc.2018.01.152.
|
[22] |
SongW, ZhaoB, WangC, et al. Electrospun nanofibrous materials: a versatile platform for enzyme mimicking and their sensing applications[J]. Composites Communications, 2019, 12: 1-13. DOI: 10.1016/j.coco.2018.12.005.
|
[23] |
金荣华,张珍珍,徐鹏钦,等.三维生物打印抗菌型水凝胶对大鼠全层皮肤缺损创面的作用[J].中华烧伤与创面修复杂志,2023,39(2):165-174.DOI: 10.3760/cma.j.cn501120-20210809-00274.
|
[24] |
MihaiMM,DimaMB,DimaB,et al.Nanomaterials for wound healing and infection control[J].Materials (Basel),2019,12(13):2176.DOI: 10.3390/ma12132176.
|
[25] |
WangQ, WeiH, ZhangZ, et al. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 218-224. DOI: 10.1016/j.trac.2018.05.012.
|
[26] |
ChenJ,ZhangS,ChenX,et al.A self-assembled fmoc-diphenylalanine hydrogel-encapsulated pt nanozyme as oxidase- and peroxidase-like breaking pH limitation for potential antimicrobial application[J].Chemistry,2022,28(26):e202104247.DOI: 10.1002/chem.202104247.
|
[27] |
JiaZ,LvX,HouY,et al.Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics[J].Bioact Mater,2021,6(9):2676-2687.DOI: 10.1016/j.bioactmat.2021.01.033.
|
[28] |
LiY,WangL,LiuH,et al.Ionic covalent-organic framework nanozyme as effective cascade catalyst against bacterial wound infection[J].Small,2021,17(32):e2100756.DOI: 10.1002/smll.202100756.
|
[29] |
SangY, LiW, LiuH, et al. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria[J]. Advanced Functional Materials, 2019,29:1900518. DOI: 10.1002/adfm.201900518.
|
[30] |
LiY,FuR,DuanZ,et al.Mussel-inspired adhesive bilayer hydrogels for bacteria-infected wound healing via NIR-enhanced nanozyme therapy[J].Colloids Surf B Biointerfaces,2022,210:112230.DOI: 10.1016/j.colsurfb.2021.112230.
|
[31] |
SunD,PangX,ChengY,et al.Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection[J].ACS Nano,2020,14(2):2063-2076.DOI: 10.1021/acsnano.9b08667.
|
[32] |
DickinsonBC,ChangCJ.Chemistry and biology of reactive oxygen species in signaling or stress responses[J].Nat Chem Biol,2011,7(8):504-511.DOI: 10.1038/nchembio.607.
|
[33] |
RatherHA,ThakoreR,SinghR,et al.Antioxidative study of cerium oxide nanoparticle functionalised PCL-gelatin electrospun fibers for wound healing application[J].Bioact Mater,2017,3(2):201-211.DOI: 10.1016/j.bioactmat.2017.09.006.
|
[34] |
TuC,LuH,ZhouT,et al.Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J].Biomaterials,2022,286:121597.DOI: 10.1016/j.biomaterials.2022.121597.
|
[35] |
XiongY,ChenL,LiuP,et al.All-in-one: multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor[J].Small,2022,18(1):e2104229.DOI: 10.1002/smll.202104229.
|
[36] |
WuH,LiF,ShaoW,et al.Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel[J].ACS Cent Sci,2019,5(3):477-485.DOI: 10.1021/acscentsci.8b00850.
|
[37] |
LiY, FuR, DuanZ, et al. Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction[J]. Small, 2022, 18(18): e2200165. DOI: 10.1002/smll.202200165.
|