Volume 39 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Li W,Kong WS,Bao YL,et al.Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair[J].Chin J Burns Wounds,2023,39(11):1090-1095.DOI: 10.3760/cma.j.cn501225-20221123-00502.
Citation: Li W,Kong WS,Bao YL,et al.Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair[J].Chin J Burns Wounds,2023,39(11):1090-1095.DOI: 10.3760/cma.j.cn501225-20221123-00502.

Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair

doi: 10.3760/cma.j.cn501225-20221123-00502
Funds:

National Key Research and Development Program of China 2019YFA0110600, 2019YFA0110602, 2019YFA0110603

More Information
  • Corresponding author: Sun Yu, Email: littlefish0916@126.com
  • Received Date: 2022-11-23
    Available Online: 2023-11-21
  • Tissue engineered skin is widely used in the treatment of refractory wounds such as severe burn wounds and diabetic wounds. Seed cells and scaffold materials are the key elements for constructing tissue engineered skin. Adipose-derived stem cells have gradually become an important choice of seed cells in tissue engineered skin due to their advantages of low immunogenicity and multi-directional differentiation potential. Scaffold material is a vital part of skin tissue engineering. The modification of single material and preparation of composite materials are becoming the main research directions of the construction of skin tissue engineering scaffolds. This paper introduced the application of various kinds of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair in recent years, and summarized the advantages and disadvantages in using various scaffold materials to the construction of skin tissue engineering scaffolds, in order to provide new ideas for the development of tissue engineered skin loaded with adipose-derived stem cells.

     

  • loading
  • [1]
    EmingSA,MartinP,Tomic-CanicM.Wound repair and regeneration: mechanisms, signaling, and translation[J].Sci Transl Med,2014,6(265):265sr6.DOI: 10.1126/scitranslmed.3009337.
    [2]
    MataiI,KaurG,SeyedsalehiA,et al.Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J].Biomaterials,2020,226:119536.DOI: 10.1016/j.biomaterials.2019.119536.
    [3]
    YuanX, LiL, LiuHF. Strategies for improving adipose-derived stem cells for tissue regeneration[J/OL]. Burns Trauma,2022,10:tkac028[2022-11-23].https://pubmed.ncbi.nlm.nih.gov/35992369/. DOI: 10.1093/burnst/tkac028.
    [4]
    WuXY,ZhuHF,CheJY,et al.Stem cell niche-inspired microcarriers with ADSCs encapsulation for diabetic wound treatment[J].Bioact Mater,2023,26:159-168.DOI: 10.1016/j.bioactmat.2023.02.031.
    [5]
    PiL, YangL, FangBR, et al. LncRNA MALAT1 from human adipose-derived stem cell exosomes accelerates wound healing via miR-378a/FGF2 axis[J]. Regen Med,2022,17(9):627-641.DOI: 10.2217/rme-2021-0170.
    [6]
    WiśniewskaJ, SłyszewskaM, StałanowskaK, et al. Effect of pig-adipose-derived stem cells' conditioned media on skin wound-healing characteristics in vitro[J]. Int J Mol Sci,2021,22(11):5469.DOI: 10.3390/ijms22115469.
    [7]
    ChoiEW,SeoMK,WooEY,et al.Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J].Exp Dermatol,2018,27(10):1170-1172.DOI: 10.1111/exd.13451.
    [8]
    ZhangX,JiangYH,HuangQ,et al.Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia[J].Stem Cell Res Ther,2021,12(1):403.DOI: 10.1186/s13287-021-02475-7.
    [9]
    YuQY, SunH, YueZW, et al. Zwitterionic polysaccharide-based hydrogel dressing as a stem cell carrier to accelerate burn wound healing[J]. Adv Healthc Mater,2023,12(7):e2202309.DOI: 10.1002/adhm.202202309.
    [10]
    LiMX,MaJ,GaoYB,et al.Epithelial differentiation of human adipose-derived stem cells (hASCs) undergoing three-dimensional (3D) cultivation with collagen sponge scaffold (CSS) via an indirect co-culture strategy[J].Stem Cell Res Ther,2020,11(1):141.DOI: 10.1186/s13287-020-01645-3.
    [11]
    SridharR,LakshminarayananR,MadhaiyanK,et al.Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J].Chem Soc Rev,2015,44(3):790-814.DOI: 10.1039/c4cs00226a.
    [12]
    MamsenFP, Munthe-FogL, KringMKM, et al. Differences of embedding adipose-derived stromal cells in natural and synthetic scaffolds for dermal and subcutaneous delivery[J]. Stem Cell Res Ther,2021,12(1):68.DOI: 10.1186/s13287-020-02132-5.
    [13]
    MuZX, ChenKW, YuanS, et al. Gelatin nanoparticle-injectable platelet-rich fibrin double network hydrogels with local adaptability and bioactivity for enhanced osteogenesis[J]. Adv Healthc Mater, 2020,9(5):e1901469. DOI: 10.1002/adhm.201901469.
    [14]
    GaoYM,GaoBW,ZhuHN,et al.Adipose-derived stem cells embedded in platelet-rich plasma scaffolds improve the texture of skin grafts in a rat full-thickness wound model[J].Burns,2020,46(2):377-385.DOI: 10.1016/j.burns.2019.07.041.
    [15]
    LaiFY, DaiSJ, ZhaoY, et al. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway[J/OL]. Injury,2023:S0020-1383(23)00123-7(2023-02-13)[2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/37028952/.DOI:10.1016/j.injury.2023.02.027. [published online ahead of print].
    [16]
    NiXJ,ShanXY,XuLL,et al.Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects[J].Stem Cell Res Ther,2021,12(1):226.DOI: 10.1186/s13287-021-02257-1.
    [17]
    EbrahimN,DessoukyAA,MostafaO,et al.Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway[J].Stem Cell Res Ther,2021,12(1):392.DOI: 10.1186/s13287-021-02454-y.
    [18]
    SorushanovaA, DelgadoLM, WuZN, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development[J]. Adv Mater,2019,31(1):e1801651. DOI: 10.1002/adma.201801651.
    [19]
    ChenCC, IbrahimZ, MarchandMF, et al. Three-dimensional collagen topology shapes cell morphology,beyond stiffness[J]. ACS Biomater Sci Eng,2022,8(12):5284-5294.DOI: 10.1021/acsbiomaterials.2c00879.
    [20]
    BarreraJA, TrotsyukAA, MaanZN, et al. Adipose-derived stromal cells seeded in pullulan-collagen hydrogels improve healing in murine burns[J]. Tissue Eng Part A,2021,27(11/12):844-856.DOI: 10.1089/ten.TEA.2020.0320.
    [21]
    LiangH,RussellSJ,WoodDJ,et al.A hydroxamic acid-methacrylated collagen conjugate for the modulation of inflammation-related MMP upregulation[J].J Mater Chem B,2018,6(22):3703-3715.DOI: 10.1039/c7tb03035e.
    [22]
    MashikoT,TakadaH,WuSH,et al.Therapeutic effects of a recombinant human collagen peptide bioscaffold with human adipose-derived stem cells on impaired wound healing after radiotherapy[J].J Tissue Eng Regen Med,2018,12(5):1186-1194.DOI: 10.1002/term.2647.
    [23]
    ZhangXM,LiuKJ,QinM,et al.Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties[J].Carbohydr Polym,2023,309:120702.DOI: 10.1016/j.carbpol.2023.120702.
    [24]
    TangYH,TongXM,ConradB,et al.Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration in vivo[J].Theranostics,2020,10(13):6035-6047.DOI: 10.7150/thno.41096.
    [25]
    LagneauN,TournierP,HalgandB,et al.Click and bioorthogonal hyaluronic acid hydrogels as an ultra-tunable platform for the investigation of cell-material interactions[J].Bioact Mater,2023,24:438-449.DOI: 10.1016/j.bioactmat.2022.12.022.
    [26]
    da SilvaLP, SantosTC, RodriguesDB, et al. Stem cell-containing hyaluronic acid-based spongy hydrogels for integrated diabetic wound healing[J]. J Invest Dermatol,2017,137(7):1541-1551.DOI: 10.1016/j.jid.2017.02.976.
    [27]
    PakCS, HeoCY, ShinJ, et al. Effects of a catechol-functionalized hyaluronic acid patch combined with human adipose-derived stem cells in diabetic wound healing[J]. Int J Mol Sci,2021,22(5):2632.DOI: 10.3390/ijms22052632.
    [28]
    SharifiE, ChehelgerdiM, Fatahian-KelishadrokhiA, et al. Comparison of therapeutic effects of encapsulated mesenchymal stem cells in aloe vera gel and chitosan-based gel in healing of grade-Ⅱ burn injuries[J]. Regen Ther,2021,18:30-37.DOI: 10.1016/j.reth.2021.02.007.
    [29]
    SharifiF,HasaniM,AtyabiSM,et al.Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation[J].Mol Biol Rep,2022,49(12):12063-12075.DOI: 10.1007/s11033-022-08013-9.
    [30]
    WangJ,ZhouLH,SunQH,et al.Porous chitosan derivative scaffolds affect proliferation and osteogenesis of mesenchymal stem cell via reducing intracellular ROS[J].Carbohydr Polym,2020,237:116108.DOI: 10.1016/j.carbpol.2020.116108.
    [31]
    LinW,QiXY,GuoWJ,et al.A barrier against reactive oxygen species: chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing[J].Stem Cell Res Ther,2020,11(1):383.DOI: 10.1186/s13287-020-01901-6.
    [32]
    WangXZ, LiSQ, YuHL,et al. The biocompatibility of multi-source stem cells and gelatin-carboxymethyl chitosan-sodium alginate hybrid biomaterials[J]. Tissue Eng Regen Med,2022,19(3):491-503.DOI: 10.1007/s13770-021-00429-x.
    [33]
    GobiR, RavichandiranP, BabuRS, et al. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review[J]. Polymers (Basel),2021,13(12):1962.DOI: 10.3390/polym13121962.
    [34]
    FrydrychM,RománS,MacNeilS,et al.Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering[J].Acta Biomater,2015,18:40-49.DOI: 10.1016/j.actbio.2015.03.004.
    [35]
    WuF, ZhengJQ, LiZX, et al. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation[J]. Chem Eng J,2019,359:672-683. DOI: 10.1016/j.cej.2018.11.145.
    [36]
    MokhtariF,AzimiB,SalehiM,et al.Recent advances of polymer-based piezoelectric composites for biomedical applications[J].J Mech Behav Biomed Mater,2021,122:104669.DOI: 10.1016/j.jmbbm.2021.104669.
    [37]
    FuHJ,ZhangDQ,ZengJS,et al.Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing[J].Int J Bioprint,2023,9(2):674.DOI: 10.18063/ijb.v9i2.674.
    [38]
    BarnettHH,HeimbuckAM,PursellI,et al.Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells[J].J Biomater Sci Polym Ed,2019,30(11):895-918.DOI: 10.1080/09205063.2019.1612725.
    [39]
    JinRH,CuiYC,ChenHJ,et al.Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink[J].Acta Biomater,2021,131:248-261.DOI: 10.1016/j.actbio.2021.07.012.
    [40]
    HuangRY,WangJ,ChenHX,et al.The topography of fibrous scaffolds modulates the paracrine function of Ad-MSCs in the regeneration of skin tissues[J].Biomater Sci,2019,7(10):4248-4259.DOI: 10.1039/c9bm00939f.
    [41]
    贾赤宇,鲍武,程夏霖.创面愈合的机遇和挑战:组织工程皮肤[J/CD].中华损伤与修复杂志(电子版),2019,14(6):401-405. DOI: 10.3877/cma.j.issn.1673-9450.2019.06.001.
    [42]
    XiaSZ, WengTT, JinRH, et al. Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds[J/OL]. Burns Trauma,2022,10:tkac001[2023-10-24].https://pubmed.ncbi.nlm.nih.gov/35291229/.DOI: 10.1093/burnst/tkac001.
    [43]
    TyebS,ShiekhPA,VermaV, et al. Adipose-derived stem cells (ADSCs) loaded gelatin-sericin-laminin cryogels for tissue regeneration in diabetic wounds[J]. Biomacromolecules,2020,21(2):294-304.DOI: 10.1021/acs.biomac.9b01355.
    [44]
    MoonKC, SunHS, KimKB, et al. Potential of allogeneic adipose-derived stem cell-hydrogel complex for treating diabetic foot ulcers[J]. Diabetes,2019,68(4):837-846.DOI: 10.2337/db18-0699.
    [45]
    Mrozikiewicz-RakowskaB, Szabłowska-GadomskaI, CysewskiD, et al. Allogenic adipose-derived stem cells in diabetic foot ulcer treatment: clinical effectiveness, safety, survival in the wound site, and proteomic impact[J]. Int J Mol Sci,2023,24(2):1472.DOI: 10.3390/ijms24021472.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (154) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return