Citation: | Liu QH,Li Z,Enhejirigala,et al.Effects of immune responses mediated by topological structures of three-dimensional bioprinted scaffolds on hair follicle cycle in mice[J].Chin J Burns Wounds,2024,40(1):43-49.DOI: 10.3760/cma.j.cn501225-20231020-00125. |
[1] |
ShafieeA, AtalaA. Tissue engineering: toward a new era of medicine[J]. Annu Rev Med, 2017, 68:29-40. DOI: 10.1146/annurev-med-102715-092331.
|
[2] |
NairA, TangLP. Influence of scaffold design on host immune and stem cell responses[J]. Semin Immunol, 2017,29:62-71. DOI: 10.1016/j.smim.2017.03.001.
|
[3] |
李洋, 惠涛涛, 郑东梅, 等. 基于三维生物打印技术的皮肤组织工程研究进展[J].中华烧伤与创面修复杂志,2023,39(11):1096-1100. DOI: 10.3760/cma.j.cn501225-20230131-00029.
|
[4] |
DhaniaS, BernelaM, RaniR, et al. Scaffolds the backbone of tissue engineering: advancements in use of polyhydroxyalkanoates (PHA)[J]. Int J Biol Macromol, 2022, 208: 243-259. DOI: 10.1016/j.ijbiomac.2022.03.030.
|
[5] |
AbnaveP, GhigoE. Role of the immune system in regeneration and its dynamic interplay with adult stem cells[J]. Semin Cell Dev Biol, 2019,87:160-168. DOI: 10.1016/j.semcdb.2018.04.002.
|
[6] |
ZhangB, SuYC, ZhouJC, et al. Toward a better regeneration through implant-mediated immunomodulation: harnessing the immune responses[J]. Adv Sci (Weinh), 2021, 8(16): e2100446. DOI: 10.1002/advs.202100446.
|
[7] |
JiangZW, FuMD, ZhuDJ, et al. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering[J]. Cytokine Growth Factor Rev, 2022,66:53-73. DOI: 10.1016/j.cytogfr.2022.05.003.
|
[8] |
AntmenE, VranaNE, HasirciV. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures[J]. Biomater Sci, 2021,9(24):8090-8110. DOI: 10.1039/d1bm00840d.
|
[9] |
HeinrichMA, LiuWJ, JimenezA, et al. 3D bioprinting: from benches to translational applications[J]. Small, 2019, 15(23): e1805510. DOI: 10.1002/smll.201805510.
|
[10] |
恩和吉日嘎拉, 张熠杰, 李建军, 等. 生物三维打印类细胞外基质硬度对骨髓间充质干细胞向皮肤附属器细胞分化的影响[J].中华烧伤杂志,2020,36(11):1013-1023. DOI: 10.3760/cma.j.cn501120-20200811-00375.
|
[11] |
ZhangYS, YueK, AlemanJ, et al. 3D bioprinting for tissue and organ fabrication[J]. Ann Biomed Eng, 2017, 45(1): 148-163. DOI: 10.1007/s10439-016-1612-8.
|
[12] |
JinS, YangRL, ChuCY, et al. Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration[J]. Acta Biomater, 2021,129:148-158. DOI: 10.1016/j.actbio.2021.05.042.
|
[13] |
WangPJ, SunYZ, ShiXQ, et al. Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: a review[J]. Bioact Mater, 2020, 6(5): 1283-1307. DOI: 10.1016/j.bioactmat.2020.10.014.
|
[14] |
LiJJ, LiuYF, ZhangYJ, et al. Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors[J]. Front Cell Dev Biol, 2021, 9: 640388. DOI: 10.3389/fcell.2021.640388.
|
[15] |
WeiQH, ZhouJY, AnYL, et al. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: a review[J]. Int J Biol Macromol, 2023, 232: 123450. DOI: 10.1016/j.ijbiomac.2023.123450.
|
[16] |
MohantoS, NarayanaS, MeraiKP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: a state-of-the-art review[J]. Int J Biol Macromol, 2023,253(Pt 5):127143. DOI: 10.1016/j.ijbiomac.2023.127143.
|
[17] |
LiJJ, ZhangYJ, EnheJ, et al. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness[J]. Mater Sci Eng C Mater Biol Appl, 2021,126:112193. DOI: 10.1016/j.msec.2021.112193.
|
[18] |
YuXP, WangYF, ZhangM, et al. 3D printing of gear-inspired biomaterials: immunomodulation and bone regeneration[J]. Acta Biomater, 2023,156:222-233. DOI: 10.1016/j.actbio.2022.09.008.
|
[19] |
WangYZ, ZhangFL, YaoB, et al. Notch4 participates in mesenchymal stem cell-induced differentiation in 3D-printed matrix and is implicated in eccrine sweat gland morphogenesis[J/OL]. Burns Trauma, 2023,11:tkad032[2023-10-20]. http://www.ncbi.nlm.nih.gov/pubmed/37397510. DOI: 10.1093/burnst/tkad032.
|
[20] |
SchneiderMR, Schmidt-UllrichR, PausR. The hair follicle as a dynamic miniorgan[J]. Curr Biol, 2009,19(3):R132-142. DOI: 10.1016/j.cub.2008.12.005.
|
[21] |
WangXS, ChenHY, TianRY, et al. Macrophages induce AKT/β-catenin-dependent Lgr5
+ stem cell activation and hair follicle regeneration through TNF[J]. Nat Commun, 2017,8:14091. DOI: 10.1038/ncomms14091.
|
[22] |
BuWH, WuYH, GhaemmaghamiAM, et al. Rational design of hydrogels for immunomodulation[J]. Regen Biomater, 2022,9:rbac009. DOI: 10.1093/rb/rbac009.
|
[23] |
PlikusMV, ChuongCM. Complex hair cycle domain patterns and regenerative hair waves in living rodents[J]. J Invest Dermatol, 2008,128(5):1071-1080. DOI: 10.1038/sj.jid.5701180.
|