Volume 40 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Chen WT,Wang XX,Zheng WL,et al.Exploring the causality between intestinal flora and hyperplastic scars of human based on two-sample Mendelian randomization analysis[J].Chin J Burns Wounds,2024,40(4):333-341.DOI: 10.3760/cma.j.cn501225-20231129-00215.
Citation: Chen WT,Wang XX,Zheng WL,et al.Exploring the causality between intestinal flora and hyperplastic scars of human based on two-sample Mendelian randomization analysis[J].Chin J Burns Wounds,2024,40(4):333-341.DOI: 10.3760/cma.j.cn501225-20231129-00215.

Exploring the causality between intestinal flora and hyperplastic scars of human based on two-sample Mendelian randomization analysis

doi: 10.3760/cma.j.cn501225-20231129-00215
Funds:

General Program of National Natural Science Foundation of China 82272276

Chongqing Traditional Chinese Medicine Innovation Team Project 2023090006KJZX2022WJW008

More Information
  • Corresponding author: Yang Ronghua, Email: 21720091@qq.com
  • Received Date: 2023-11-29
  •   Objective   To investigate the causality between intestinal flora and hypertrophic scars (HS) of human.   Methods   This study was a study based on two-sample Mendelian randomization (TSMR) analysis. The data on intestinal flora ( n=18 473) and HS ( n=208 248) of human were obtained from the genome-wide association study database. Genetically variable genes at five levels (phylum, class, order, family, and genus) of known intestinal flora, i.e., single nucleotide polymorphisms (SNPs), were extracted as instrumental variables for linkage disequilibrium (LD) analysis. Human genotype-phenotype association analysis was performed using PhenoScanner V2 database to exclude SNPs unrelated to HS in intestinal flora and analyze whether the selected SNPs were weak instrumental variables. The causal relationship between intestinal flora SNPs and HS was analyzed through four methods of TSMR analysis, namely inverse variance weighted (IVW), MR-Egger regression, weighted median, and weighted mode. Scatter plots of significant results from the four aforementioned analysis methods were plotted to analyze the correlation between intestinal flora SNPs and HS. Both IVW test and MR-Egger regression test were used to assess the heterogeneity of intestinal flora SNPs, MR-Egger regression test and MR-PRESSO outlier test were used to assess the horizontal multiplicity of intestinal flora SNPs, and leave-one-out sensitivity analysis was used to determine whether HS was caused by a single SNP in the intestinal flora. Reverse TSMR analyses were performed for HS SNPs and genus Intestinimonas or genus Ruminococcus2, respectively, to detect whether there was reverse causality between them.   Results   A total of 196 known intestinal flora, belonging to 9 phyla, 16 classes, 20 orders, 32 families, and 119 genera, were obtained, and multiple SNPs were obtained from each flora as instrumental variables. LD analysis showed that the SNPs of the intestinal flora were consistent with the hypothesis that genetic variation was strongly associated with exposure factors, except for rs1000888, rs12566247, and rs994794. Human genotype-phenotype association analysis showed that none of the selected SNPs after LD analysis was excluded and there were no weak instrumental variables. IVW, MR-Egger regression, weighted median, and weighted mode of TSMR analysis showed that both genus Intestinimonas and genus Ruminococcus2 were causally associated with HS. Among them, forest plots of IVW and MR-Egger regression analyses also showed that 16 SNPs (the same SNPs number of this genus below) of genus Intestinimonas and 15 SNPs (the same SNPs number of this genus below) of genus Ruminococcus2 were protective factors for HS. Further, IVW analysis showed that genus Intestinimonas SNPs (with odds ratio of 0.62, 95% confidence interval of 0.41-0.93, P<0.05) and genus Ruminococcus2 SNPs (with odds ratio of 0.62, 95% confidence interval of 0.40-0.97, P<0.05) were negatively correlated with the risk of HS. Scatter plots showed that SNPs of genus Intestinimonas and genus Ruminococcus2 were protective factors of HS. Both IVW test and MR-Egger regression test showed that SNPs of genus Intestinimonas (with Q values of 5.73 and 5.76, respectively, P>0.05) and genus Ruminococcus2 (with Q values of 13.67 and 15.61, respectively, P>0.05) were not heterogeneous. MR-Egger regression test showed that the SNPs of genus Intestinimonas and genus Ruminococcus2 had no horizontal multiplicity (with intercepts of 0.01 and 0.06, respectively, P>0.05); MR-PRESSO outlier test showed that the SNPs of genus Intestinimonas and genus Ruminococcus2 had no horizontal multiplicity ( P>0.05). Leave-one-out sensitivity analysis showed that no single intestinal flora SNP drove the occurrence of HS. Reverse TSMR analysis showed no reverse causality between HS SNPs and genus Intestinimonas or genus Ruminococcus2 (with odds ratios of 1.01 and 0.99, respectively, 95% confidence intervals of 0.97-1.06 and 0.96-1.04, respectively, P>0.05).   Conclusions   There is a causal relationship between intestinal flora and HS of human, in which genus Intestinimonas and genus Ruminococcus2 have a certain effect on inhibiting HS.

     

  • loading
  • [1]
    WangZC, ZhaoWY, CaoY, et al. The roles of inflammation in keloid and hypertrophic scars[J]. Front Immunol, 2020,11:603187. DOI: 10.3389/fimmu.2020.603187.
    [2]
    ChiangRS, BorovikovaAA, KingK, et al. Current concepts related to hypertrophic scarring in burn injuries[J]. Wound Repair Regen, 2016,24(3):466-477. DOI: 10.1111/wrr.12432.
    [3]
    LeeHJ, JangYJ. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids[J]. Int J Mol Sci, 2018,19(3):711.DOI: 10.3390/ijms19030711.
    [4]
    郑建新,张亚军. 二氧化碳点阵激光联合曲安奈德注射治疗增生性瘢痕的疗效[J]. 中国医疗美容,2020,10(5):84-88. DOI: 10.19593/j.issn.2095-0721.2020.05.020.
    [5]
    NiuM, ChenP. Crosstalk between gut microbiota and sepsis[J/OL]. Burns Trauma, 2021,9:tkab036[2023-11-29]. https://pubmed.ncbi.nlm.nih.gov/34712743/. DOI: 10.1093/burnst/tkab036.
    [6]
    CamposLF, TagliariE, CasagrandeT, et al. Effects of probiotics supplementation on skin wound healing in diabetic rats[J]. Arq Bras Cir Dig, 2020,33(1):e1498. DOI: 10.1590/0102-672020190001e1498.
    [7]
    AlamA, NeishA. Role of gut microbiota in intestinal wound healing and barrier function[J]. Tissue Barriers, 2018,6(3):1539595. DOI: 10.1080/21688370.2018.1539595.
    [8]
    吴金春, 刘彦民, 苏晓灵. 肠道菌群/肠道微生态与心血管疾病发生的关系研究进展[J].解放军医学杂志,2023,48(7):851-855. DOI: 10.11855/j.issn.0577-7402.2696.2022.0830.
    [9]
    WaasdorpM, KromBP, BikkerFJ, et al. The bigger picture: why oral mucosa heals better than skin[J]. Biomolecules, 2021,11(8):1165.DOI: 10.3390/biom11081165.
    [10]
    PatelBK, PatelKH, HuangRY, et al. The gut-skin microbiota axis and its role in diabetic wound healing-a review based on current literature[J]. Int J Mol Sci, 2022, 23(4):2375. DOI: 10.3390/ijms23042375.
    [11]
    BurgessS, FoleyCN, AllaraE, et al. A robust and efficient method for Mendelian randomization with hundreds of genetic variants[J]. Nat Commun, 2020,11(1):376. DOI: 10.1038/s41467-019-14156-4.
    [12]
    LevinMG, JudyR, GillD, et al. Genetics of height and risk of atrial fibrillation: a Mendelian randomization study[J]. PLoS Med, 2020,17(10):e1003288. DOI: 10.1371/journal.pmed.1003288.
    [13]
    O'NeillCA, MonteleoneG, McLaughlinJT, et al. The gut-skin axis in health and disease: a paradigm with therapeutic implications[J]. Bioessays, 2016,38(11):1167-1176. DOI: 10.1002/bies.201600008.
    [14]
    BelkaidY, HarrisonOJ. Homeostatic immunity and the microbiota[J]. Immunity, 2017,46(4):562-576. DOI: 10.1016/j.immuni.2017.04.008.
    [15]
    Polkowska-PruszyńskaB, GerkowiczA, KrasowskaD. The gut microbiome alterations in allergic and inflammatory skin diseases - an update[J]. J Eur Acad Dermatol Venereol, 2020,34(3):455-464. DOI: 10.1111/jdv.15951.
    [16]
    BenyacoubJ, BoscoN, BlanchardC, et al. Immune modulation property of Lactobacillus paracasei NCC2461 (ST11) strain and impact on skin defences[J]. Benef Microbes, 2014,5(2):129-136. DOI: 10.3920/BM2013.0014.
    [17]
    PeralMC, RachidMM, GobbatoNM, et al. Interleukin-8 production by polymorphonuclear leukocytes from patients with chronic infected leg ulcers treated with Lactobacillus plantarum[J]. Clin Microbiol Infect, 2010,16(3):281-286. DOI: 10.1111/j.1469-0691.2009.02793.x.
    [18]
    AfoudaP, DurandGA, LagierJC, et al. Noncontiguous finished genome sequence and description of Intestinimonas massiliensis sp. nov strain GD2T, the second Intestinimonas species cultured from the human gut[J]. Microbiologyopen, 2019,8(1):e00621. DOI: 10.1002/mbo3.621.
    [19]
    ZhouJ, LiM, ChenQ, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nat Commun, 2022,13(1):3432. DOI: 10.1038/s41467-022-31171-0.
    [20]
    LiuJ, ChangG, HuangJ, et al. Sodium butyrate inhibits the inflammation of lipopolysaccharide-induced acute lung injury in mice by regulating the Toll-like receptor 4/nuclear factor κB signaling pathway[J]. J Agric Food Chem, 2019,67(6):1674-1682. DOI: 10.1021/acs.jafc.8b06359.
    [21]
    ArpaiaN, CampbellC, FanX, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013,504(7480):451-455. DOI: 10.1038/nature12726.
    [22]
    HuangC, AkaishiS, HyakusokuH, et al. Are keloid and hypertrophic scar different forms of the same disorder? A fibroproliferative skin disorder hypothesis based on keloid findings[J]. Int Wound J, 2014,11(5):517-522. DOI: 10.1111/j.1742-481X.2012.01118.x.
    [23]
    HuangC, OgawaR. Role of inflammasomes in keloids and hypertrophic scars-lessons learned from chronic diabetic wounds and skin fibrosis[J]. Int J Mol Sci, 2022,23(12):6280.DOI: 10.3390/ijms23126820.
    [24]
    ZhangT, WangXF, WangZC, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation[J]. Biomed Pharmacother, 2020,129:110287. DOI: 10.1016/j.biopha.2020.110287.
    [25]
    La ReauAJ, SuenG. The Ruminococci: key symbionts of the gut ecosystem[J]. J Microbiol, 2018,56(3):199-208. DOI: 10.1007/s12275-018-8024-4.
    [26]
    LiY, ZhangSX, YinXF, et al. The gut microbiota and its relevance to peripheral lymphocyte subpopulations and cytokines in patients with rheumatoid arthritis[J]. J Immunol Res, 2021,2021:6665563. DOI: 10.1155/2021/6665563.
    [27]
    ZhouN, ShenY, FanL, et al. The characteristics of intestinal-barrier damage in rats with IgA nephropathy[J]. Am J Med Sci, 2020,359(3):168-176. DOI: 10.1016/j.amjms.2019.11.011.
    [28]
    WangT, SternesPR, GuoXK, et al. Autoimmune diseases exhibit shared alterations in the gut microbiota[J]. Rheumatology (Oxford), 2024,63(3):856-865. DOI: 10.1093/rheumatology/kead364.
    [29]
    Lopez-SilesM, KhanTM, DuncanSH, et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth[J]. Appl Environ Microbiol, 2012,78(2):420-428. DOI: 10.1128/AEM.06858-11.
    [30]
    MahmudMR, AkterS, TamannaSK, et al. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases[J]. Gut Microbes, 2022,14(1):2096995. DOI: 10.1080/19490976.2022.2096995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (81) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return