Cai Duo, Wu Weiwei, Zhang Dandan, et al. Effects of two dimensional gray-scale blood flow imaging combined with color Doppler flow imaging in guiding arterial puncture and catheterization through wounds in patients with large burns[J]. Chin j Burns, 2020, 36(6): 440-445. Doi: 10.3760/cma.j.cn501120-20190309-00099
Citation: Shi JJ,Zhao L,Li XL,et al.Analysis of the characteristics of infectious pathogens in burn patients with sepsis based on metagenomic next-generation sequencing technology[J].Chin J Burns Wounds,2024,40(10):940-947.DOI: 10.3760/cma.j.cn501225-20240418-00137.

Analysis of the characteristics of infectious pathogens in burn patients with sepsis based on metagenomic next-generation sequencing technology

doi: 10.3760/cma.j.cn501225-20240418-00137
Funds:

Young and Middle-Aged Health Science and Technology Innovation Talent Project of Henan Province of China YXKC2020060

Medical science and technology research project of Henan Province of China LHGJ20230754

More Information
  •   Objective  To analyze the characteristics of infectious pathogens in burn patients with sepsis based on metagenomic next-generation sequencing (mNGS) technology.  Methods  This study was a retrospective observational study. From July 2021 to December 2023, 109 burn patients with sepsis who met the inclusion criteria were admitted to the Department of Burns of the First People's Hospital of Zhengzhou, including 68 males aged 57 to 92 years and 41 females aged 48 to 83 years. Blood, bronchoalveolar lavage fluid, cerebrospinal fluid, sputum, or other fluid specimens were collected from the patients during their hospital stay for microbiological culture (86 patients) and mNGS technology detection (109 patients). The types of specimens and pathogens detected by mNGS technology were counted. Patients were divided into intensive care unit (ICU) group (78 cases) who were admitted to the ICU and non-ICU group (31 cases) who were not admitted to the ICU, and the pathogens for infection in the two groups of patients were analyzed. In addition, the detection of pathogens in the specimens of 86 patients who underwent both mNGS technology detection and microbiological culture detection was analyzed.  Results  Among the 109 specimens detected by mNGS technology, there were 42 blood specimens, 17 bronchoalveolar lavage fluid specimens, 4 sputum specimens, 6 cerebrospinal fluid specimens, 16 pus specimens, and 24 tissue fluid specimens; a total of 39 pathogens were detected, including 13 bacteria, 12 fungi, 10 viruses, 2 parasites, and 2 mycoplasmas. The overall positive rate of pathogen detection was 88.99% (97/109). Ranked by the detection rate, the top three Gram-negative bacteria were Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas spp, the top three Gram-positive bacteria were Streptococcus pneumoniae, Staphylococcus aureus, and Enterococcus faecalis; the top three viruses were human herpesvirus, cytomegalovirus, and circovirus; the top three fungi were Aspergillus fumigatus, Candida albicans, and Aspergillus flavus. Twenty-seven patients were infected with one pathogen, 45 patients with two pathogens, and 25 patients with three or more pathogens. Compared with those in non-ICU group, the proportions of Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas spp, Streptococcus pneumoniae, Aspergillus fumigatus, and cytomegalovirus detected in the patients in ICU group were significantly higher (with χ2 values of 8.62, 7.93, 3.93, 5.48, 4.28, and 5.58, respectively, P<0.05). In the pathogens detected by mNGS technology and microbiological culture method, the most common bacteria were Klebsiellapneumoniae and Acinetobacter baumannii, and the most common fungi were strains of Aspergillus and Candida. There were 19 pathogens those could only be detected by mNGS technology, such as Lichtheimia ramosa, Pneumocystis jirovecii, Mycobacterium tuberculosis, viruses, etc.; there were no pathogens detected by microbiological culture method that couldn't be detected by mNGS technology. Compared with those detected by microbiological culture method, the overall positive rate, bacterial positive rate, and fungal positive rate detected by mNGS technology were significantly increased (with χ2 values of 45.52, 5.88, and 4.94, respectively, P<0.05). The 27.91% (24/86) of patients were detected positive by both methods, and 72.09% (62/86) of the patients were detected positive by mNGS technology but negative by microbiological culture method. The consistency test of the results obtained by the two detection methods showed that the difference was not statistically significant (κ=0.02, P>0.05).  Conclusions  The positive rate of pathogen detection in specimens using mNGS technology is higher than that detected by using conventional microbiological culture method, and it can detect pathogens those cannot be detected by the latter, such as Lichtheimia ramosa, Pneumocystis jirovidii, Mycobacterium tuberculosis, viruses, etc. Detection using mNGS technology can help clarify the types of infectious pathogens in burns patients with sepsis, and provide basis and guidance for clinical medication.

     

  • [1]
    马琪敏, 汤文彬, 李孝建, 等. 危重烧伤老年患者早期临床特征的多中心回 顾分析及预后的危险因素分析[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 249-257. DOI: 10.3760/cma.j.cn501225-20230808-00042.
    [2]
    BelbaMK, PetrelaEY, BelbaAG. Epidemiology and outcome analysis of sepsis and organ dysfunction/failure after burns[J]. Burns, 2017, 43(6): 1335-1347. DOI: 10.1016/j.burns.2017.02.017.
    [3]
    TorresMJM, PetersonJM, WolfSE. Detection of infection and sepsis in burns[J]. Surg Infect (Larchmt), 2021, 22(1): 20-27. DOI: 10.1089/sur.2020.348.
    [4]
    WilsonMR, NaccacheSN, SamayoaE, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. N Engl J Med, 2014, 370(25): 2408-2417. DOI: 10.1056/NEJMoa1401268.
    [5]
    WangL, LiS, QinJ, et al. Clinical diagnosis application of metagenomic next-generation sequencing of plasma in suspected sepsis[J]. Infect Drug Resist, 2023,16:891-901. DOI: 10.2147/IDR.S395700.
    [6]
    OverbeekR, LeitlCJ, StollSE, et al. The value of next-generation sequencing in diagnosis and therapy of critically ill patients with suspected bloodstream infections: a retrospective cohort study[J]. J Clin Med, 2024, 13(2): 306. DOI: 10.3390/jcm13020306.
    [7]
    BloemsmaGC, DokterJ, BoxmaH, et al. Mortality and causes of death in a burn centre[J]. Burns, 2008, 34(8): 1103-1107. DOI: 10.1016/j.burns.2008.02.010.
    [8]
    LavrentievaA, VoutsasV, KonoglouM, et al. Determinants of outcome in burn ICU patients with septic shock[J]. J Burn Care Res, 2017, 38(1): e172-e179. DOI: 10.1097/BCR.0000000000000337.
    [9]
    SingerM, DeutschmanCS, SeymourCW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8):801-810. DOI: 10.1001/jama.2016.0287.
    [10]
    曹钰, 柴艳芬, 邓颖, 等. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 感染、炎症、修复, 2019, 20(1): 3-22. DOI: 10.3969/j.issn.1672-8521.2019.01.001.
    [11]
    MillerS, NaccacheSN, SamayoaE, et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid[J]. Genome Res, 2019,29(5):831-842. DOI: 10.1101/gr.238170.118.
    [12]
    BolgerAM, LohseM, UsadelB. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI: 10.1093/bioinformatics/btu170.
    [13]
    LiH, DurbinR. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760. DOI: 10.1093/bioinformatics/btp324.
    [14]
    ZinterMS, DvorakCC, MaydayMY, et al. Pulmonary metagenomic sequencing suggests missed infections in immunocompromised children[J]. Clin Infect Dis, 2019,68(11):1847-1855. DOI: 10.1093/cid/ciy802.
    [15]
    NapolitanoLM. Sepsis 2018: definitions and guideline changes[J]. Surg Infect (Larchmt), 2018,19(2):117-125. DOI: 10.1089/sur.2017.278.
    [16]
    ChiuCY, MillerSA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20(6): 341-355. DOI: 10.1038/s41576-019-0113-7.
    [17]
    WilsonMR, SampleHA, ZornKC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis[J]. N Engl J Med, 2019, 380(24): 2327-2340. DOI: 10.1056/NEJMoa1803396.
    [18]
    ChenY, FengW, YeK, et al. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary infectious pathogens from bronchoalveolar lavage samples[J]. Front Cell Infect Microbiol, 2021,11:541092. DOI: 10.3389/fcimb.2021.541092.
    [19]
    GuW, DengX, LeeM, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids[J]. Nat Med, 2021,27(1):115-124. DOI: 10.1038/s41591-020-1105-z.
    [20]
    QinC, ZhangS, ZhaoY, et al. Diagnostic value of metagenomic next-generation sequencing in sepsis and bloodstream infection[J]. Front Cell Infect Microbiol, 2023, 10 (13): 1117987. DOI: 10.3389/fcimb.2023.1117987.
    [21]
    HuangJ, JiangE, YangD, et al. Metagenomic next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions[J]. Infect Drug Resist, 2020,13:567-576. DOI: 10.2147/IDR.S235182.
    [22]
    HanD, LiZ, LiR, et al. mNGS in clinical microbiology laboratories: on the road to maturity[J]. Crit Rev Microbiol, 2019,45(5/6):668-685. DOI: 10.1080/1040841X.2019.1681933.
    [23]
    SimnerPJ, MillerS, CarrollKC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018,66(5):778-788. DOI: 10.1093/cid/cix881.
    [24]
    AfshinnekooE, ChouC, AlexanderN, et al. Precision metagenomics: rapid metagenomic analyses for infectious disease diagnostics and public health surveillance[J]. J Biomol Tech, 2017,28(1):40-45. DOI: 10.7171/jbt.17-2801-007.
    [25]
    WangY, BeekmanJ, HewJ, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring[J]. Adv Drug Deliv Rev, 2018,123:3-17. DOI: 10.1016/j.addr.2017.09.018.
    [26]
    OryanA, AlemzadehE, MoshiriA. Burn wound healing: present concepts, treatment strategies and future directions[J]. J Wound Care, 2017, 26(1): 5-19. DOI: 10.12968/jowc.2017.26.1.5.
    [27]
    袁志强, 彭毅志. 烧伤重症监护病房多重耐药菌感染的应对策略及思考[J]. 中华烧伤杂志, 2021, 37(6): 524-529. DOI: 10.3760/cma.j.cn501120-20210413-00129.
    [28]
    SalzerHJF, BurchardG, CornelyOA, et al. Diagnosis and management of systemic endemic mycoses causing pulmonary disease[J]. Respiration, 2018, 96(3): 283-301. DOI: 10.1159/000489501.
    [29]
    GuarnerJ, BrandtME. Histopathologic diagnosis of fungal infections in the 21st century[J]. Clin Microbiol Rev, 2011,24(2):247-280. DOI: 10.1128/CMR.00053-10.
    [30]
    LiH, GaoH, MengH, et al. Detection of pulmonary infectious pathogens from lung biopsy tissues by metagenomic next-generation sequencing[J]. Front Cell Infect Microbiol, 2018,8:205. DOI: 10.3389/fcimb.2018.00205.
    [31]
    SokulskaM, KiciaM, WesołowskaM, et al. Pneumocystis jirovecii--from a commensal to pathogen: clinical and diagnostic review[J]. Parasitol Res, 2015,114(10):3577-3585. DOI: 10.1007/s00436-015-4678-6.
    [32]
    CantalupoPG, PipasJM. Detecting viral sequences in NGS data[J]. Curr Opin Virol, 2019,39:41-48. DOI: 10.1016/j.coviro.2019.07.010.
    [33]
    SalterSJ, CoxMJ, TurekEM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses[J]. BMC Biol, 2014,12:87. DOI: 10.1186/s12915-014-0087-z.
    [34]
    Conceição-NetoN, ZellerM, LefrèreH, et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis[J]. Sci Rep, 2015,5:16532. DOI: 10.1038/srep16532.
    [35]
    HengX, CaiP, YuanZ, et al. Efficacy and safety of extracorporeal membrane oxygenation for burn patients: a comprehensive systematic review and meta-analysis[J/OL]. Burns Trauma, 2023,11:tkac056[2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36873286/. DOI: 10.1093/burnst/tkac056.
    [36]
    HuangJ, ChenY, GuoZ, et al. Prospective study and validation of early warning marker discovery based on integrating multi-omics analysis in severe burn patients with sepsis[J/OL]. Burns Trauma, 2023,11:tkac050[2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36659877/. DOI: 10.1093/burnst/tkac050.
  • Relative Articles

    [1]Wang Zejing, Li Haihang, Ben Chi, Lu Hao, Zhu Shihui. Research advances on application of miniature free skin grafting technique[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(1): 93-96. doi: 10.3760/cma.j.cn501120-20191223-00468
    [2]Huang Shaobin, Hu Zhicheng, Zhang Yi, Tang Bing, Wang Peng, Xu Hailin, Wang Zhiyong, Dong Yunxian, Cheng Pu, Rong Yanchao, Wu Jun, Zhu Jiayuan. Effects and mechanisms of allogeneic epidermal stem cells on the survival of allogeneic full-thickness skin grafts in nude mice with full-thickness skin defect wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(11): 1061-1069. doi: 10.3760/cma.j.cn501120-20200704-00339
    [3]Rong Xiangke, Wang Kai, Wang Tong, Yang Jizhong, Ding Jianke, Dang Juanli, Yu Zhou, Yi Chenggang. Explorative study of the immobilizing effect of full-thickness skin subcutaneous grafting on allogeneic full-thickness skin graft in rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(10): 987-989. doi: 10.3760/cma.j.cn501120-20200801-00365
    [4]Li Shaohui, Zhang Wanfu, Hu Xiaolong, Wang Yunchuan, Han Fei, Ji Peng, Han Fu, Hu Dahai, Guan Hao. Clinical application of negative-pressure wound therapy in split-thickness skin grafting at hard-to-fix sites[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(7): 528-533. doi: 10.3760/cma.j.cn501120-20200224-00086
    [5]Li Xingzhao, Cai Chen, Xu Qinglian, Hu Delin, Song Junhui, Xia Zhengguo. Analysis of reasons for failure of Meek micro-skin grafting in children with severe burn and treatment measures[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(7): 525-531. doi: 10.3760/cma.j.issn.1009-2587.2019.07.009
    [6]Peng Huan, Liang Pengfei, Wang Ang, Yue Liqing. Influences of different rehabilitative methods on function of hands and psychological anxiety of patients with deeply burned hands retaining denatured dermis and grafting large autologous skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(5): 272-276. doi: 10.3760/cma.j.issn.1009-2587.2017.05.004
    [7]Qiu Yuxuan, Zhang Guoan, Wan Jiangbo, Zhao Xiaozhuo. Influence of covering of auto-crosslinked sodium hyaluronate gel in combination with xenogenic acellular dermal matrix on healing of full-thickness skin defect wound in pig[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(9): 555-559. doi: 10.3760/cma.j.issn.1009-2587.2016.09.009
    [12]HUANG Bo-gao, LIAO Zhen-jiang, ZHANG Qin, DOU Yi. Comparison between intermingled skin transplantation and microskin grafting in repairing massive deep burn[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(6): 448-450. doi: 10.3760/cma.j.issn.1009-2587.2009.06.017
    [13]ZHANG Ming- liang. Retrospection and future of microskin grafting[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(5): 343-345.
    [14]LU Shu-liang. Basic and clinical research in the field of burn wound healing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(5): 359-361.
  • 史继静.mp4
  • Cited by

    Periodical cited type(11)

    1. 曾云谦,甘辛,康皓. 负压封闭引流联合人工皮技术在创面修复中应用的研究进展. 骨科. 2024(02): 187-192 .
    2. 郭雪鹏,杨军,项杰,王珂,高闫尧,庹章强. 聚氨酯泡沫敷料联合VSD技术修复四肢深Ⅱ度烧伤创面的临床研究. 中国实用医刊. 2024(10): 57-60 .
    3. 储国平,蒋朝龙,宣天梵,周滇,丁羚涛,杨敏烈,赵朋,朱宇刚,吕国忠. 股动脉假性动脉瘤合并感染创面的处理策略. 中华烧伤与创面修复杂志. 2023(07): 641-647 . 本站查看
    4. 董禹辰,黄容,赵聪颖,李学拥. 负压微环境对人脐静脉血管内皮细胞新生的影响及其机制. 中华烧伤与创面修复杂志. 2022(06): 520-531 . 本站查看
    5. 徐红梅,李发家,王亮. 聚氨酯创面敷料的细菌内毒素检查法. 中国医学工程. 2022(07): 22-25 .
    6. 朱木兰,甄莉,李雅男,龚立红. 1例回肠造口周围脓肿合并多重耐药菌感染患者的伤口护理. 中国临床护理. 2022(09): 591-593 .
    7. 宫宇,孙波. 负压封闭引流治疗骨科腔隙创面疗效分析. 中国烧伤创疡杂志. 2022(06): 397-400 .
    8. 蔡德南,陈新龙,陈斐,王木盛,梁显南. 不同负压材料在Ⅲ度烧伤切痂创面修复中的应用效果比较. 中国美容医学. 2021(07): 22-25 .
    9. 任永强,李庆华,董丽. 切痂植皮术与削痂植皮术对Ⅲ°关节烧伤患者局部微循环及创面美容度的影响比较. 中国实用医刊. 2021(09): 24-27 .
    10. 石磊,安华山,陈涛,杨钊. 聚乙烯醇泡沫材料对Ⅲ度烧伤患者的创面修复效果研究. 海南医学. 2021(22): 2947-2950 .
    11. 沈文川,吴贞天,汤俊,丁若虹. 切痂植皮修复关节部位烧伤创面的效果及对局部微循环的影响. 中国美容医学. 2021(11): 30-33 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200250300
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.2 %FULLTEXT: 5.2 %META: 91.2 %META: 91.2 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.1 %其他: 6.1 %China: 0.2 %China: 0.2 %三明: 0.2 %三明: 0.2 %上海: 0.4 %上海: 0.4 %东莞: 0.2 %东莞: 0.2 %丽水: 0.4 %丽水: 0.4 %九江: 0.4 %九江: 0.4 %仙桃: 0.7 %仙桃: 0.7 %六安: 0.2 %六安: 0.2 %北京: 0.4 %北京: 0.4 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南平: 0.7 %南平: 0.7 %南昌: 0.2 %南昌: 0.2 %南通: 0.4 %南通: 0.4 %台州: 0.2 %台州: 0.2 %合肥: 0.4 %合肥: 0.4 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 4.0 %嘉兴: 4.0 %大连: 2.5 %大连: 2.5 %天津: 0.9 %天津: 0.9 %太原: 1.1 %太原: 1.1 %威海: 2.7 %威海: 2.7 %宁德: 0.2 %宁德: 0.2 %安康: 0.2 %安康: 0.2 %山景城: 0.2 %山景城: 0.2 %张家口: 2.0 %张家口: 2.0 %德阳: 0.4 %德阳: 0.4 %成都: 0.7 %成都: 0.7 %扬州: 1.3 %扬州: 1.3 %文昌: 0.9 %文昌: 0.9 %昆明: 0.9 %昆明: 0.9 %杭州: 0.9 %杭州: 0.9 %榆林: 0.9 %榆林: 0.9 %武汉: 0.2 %武汉: 0.2 %汕头: 0.2 %汕头: 0.2 %池州: 0.7 %池州: 0.7 %沈阳: 0.4 %沈阳: 0.4 %泉州: 0.4 %泉州: 0.4 %泰州: 0.4 %泰州: 0.4 %洛阳: 0.9 %洛阳: 0.9 %济南: 0.2 %济南: 0.2 %海西: 0.4 %海西: 0.4 %淮北: 2.7 %淮北: 2.7 %淮南: 0.4 %淮南: 0.4 %淮安: 0.2 %淮安: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 1.3 %温州: 1.3 %湖州: 1.3 %湖州: 1.3 %漯河: 2.5 %漯河: 2.5 %漳州: 0.2 %漳州: 0.2 %潜江: 1.3 %潜江: 1.3 %烟台: 0.2 %烟台: 0.2 %珠海: 1.6 %珠海: 1.6 %石家庄: 0.2 %石家庄: 0.2 %福州: 2.9 %福州: 2.9 %自贡: 1.8 %自贡: 1.8 %舟山: 7.9 %舟山: 7.9 %芒廷维尤: 5.8 %芒廷维尤: 5.8 %芝加哥: 2.0 %芝加哥: 2.0 %苏州: 4.5 %苏州: 4.5 %荆州: 0.2 %荆州: 0.2 %荆门: 0.7 %荆门: 0.7 %莆田: 0.4 %莆田: 0.4 %莱芜: 1.6 %莱芜: 1.6 %葫芦岛: 0.7 %葫芦岛: 0.7 %衢州: 0.4 %衢州: 0.4 %襄阳: 0.2 %襄阳: 0.2 %西宁: 1.8 %西宁: 1.8 %西安: 2.5 %西安: 2.5 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.4 %邵阳: 0.4 %郑州: 0.9 %郑州: 0.9 %重庆: 9.7 %重庆: 9.7 %金华: 2.2 %金华: 2.2 %铜川: 0.4 %铜川: 0.4 %长沙: 0.2 %长沙: 0.2 %随州: 0.7 %随州: 0.7 %鞍山: 1.8 %鞍山: 1.8 %鹰潭: 0.9 %鹰潭: 0.9 %黄石: 0.4 %黄石: 0.4 %其他China三明上海东莞丽水九江仙桃六安北京十堰南京南平南昌南通台州合肥哥伦布嘉兴大连天津太原威海宁德安康山景城张家口德阳成都扬州文昌昆明杭州榆林武汉汕头池州沈阳泉州泰州洛阳济南海西淮北淮南淮安深圳温州湖州漯河漳州潜江烟台珠海石家庄福州自贡舟山芒廷维尤芝加哥苏州荆州荆门莆田莱芜葫芦岛衢州襄阳西宁西安邯郸邵阳郑州重庆金华铜川长沙随州鞍山鹰潭黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (405) PDF downloads(16) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return