Zhu Haijie, Chen Cheng, Zhang Xiaorong, et al. Mechanism study of dendritic epidermal T lymphocytes in promoting healing of full-thickness skin defects wound on mice by regulating the proliferation and differentiation of epidermal stem cells in mice[J]. Chin j Burns, 2020, 36(10): 905-914. Doi: 10.3760/cma.j.cn501120-20200623-00324
Citation: Shi JJ,Zhao L,Li XL,et al.Analysis of the characteristics of infectious pathogens in burn patients with sepsis based on metagenomic next-generation sequencing technology[J].Chin J Burns Wounds,2024,40(10):940-947.DOI: 10.3760/cma.j.cn501225-20240418-00137.

Analysis of the characteristics of infectious pathogens in burn patients with sepsis based on metagenomic next-generation sequencing technology

doi: 10.3760/cma.j.cn501225-20240418-00137
Funds:

Young and Middle-Aged Health Science and Technology Innovation Talent Project of Henan Province of China YXKC2020060

Medical science and technology research project of Henan Province of China LHGJ20230754

More Information
  •   Objective  To analyze the characteristics of infectious pathogens in burn patients with sepsis based on metagenomic next-generation sequencing (mNGS) technology.  Methods  This study was a retrospective observational study. From July 2021 to December 2023, 109 burn patients with sepsis who met the inclusion criteria were admitted to the Department of Burns of the First People's Hospital of Zhengzhou, including 68 males aged 57 to 92 years and 41 females aged 48 to 83 years. Blood, bronchoalveolar lavage fluid, cerebrospinal fluid, sputum, or other fluid specimens were collected from the patients during their hospital stay for microbiological culture (86 patients) and mNGS technology detection (109 patients). The types of specimens and pathogens detected by mNGS technology were counted. Patients were divided into intensive care unit (ICU) group (78 cases) who were admitted to the ICU and non-ICU group (31 cases) who were not admitted to the ICU, and the pathogens for infection in the two groups of patients were analyzed. In addition, the detection of pathogens in the specimens of 86 patients who underwent both mNGS technology detection and microbiological culture detection was analyzed.  Results  Among the 109 specimens detected by mNGS technology, there were 42 blood specimens, 17 bronchoalveolar lavage fluid specimens, 4 sputum specimens, 6 cerebrospinal fluid specimens, 16 pus specimens, and 24 tissue fluid specimens; a total of 39 pathogens were detected, including 13 bacteria, 12 fungi, 10 viruses, 2 parasites, and 2 mycoplasmas. The overall positive rate of pathogen detection was 88.99% (97/109). Ranked by the detection rate, the top three Gram-negative bacteria were Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas spp, the top three Gram-positive bacteria were Streptococcus pneumoniae, Staphylococcus aureus, and Enterococcus faecalis; the top three viruses were human herpesvirus, cytomegalovirus, and circovirus; the top three fungi were Aspergillus fumigatus, Candida albicans, and Aspergillus flavus. Twenty-seven patients were infected with one pathogen, 45 patients with two pathogens, and 25 patients with three or more pathogens. Compared with those in non-ICU group, the proportions of Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas spp, Streptococcus pneumoniae, Aspergillus fumigatus, and cytomegalovirus detected in the patients in ICU group were significantly higher (with χ2 values of 8.62, 7.93, 3.93, 5.48, 4.28, and 5.58, respectively, P<0.05). In the pathogens detected by mNGS technology and microbiological culture method, the most common bacteria were Klebsiellapneumoniae and Acinetobacter baumannii, and the most common fungi were strains of Aspergillus and Candida. There were 19 pathogens those could only be detected by mNGS technology, such as Lichtheimia ramosa, Pneumocystis jirovecii, Mycobacterium tuberculosis, viruses, etc.; there were no pathogens detected by microbiological culture method that couldn't be detected by mNGS technology. Compared with those detected by microbiological culture method, the overall positive rate, bacterial positive rate, and fungal positive rate detected by mNGS technology were significantly increased (with χ2 values of 45.52, 5.88, and 4.94, respectively, P<0.05). The 27.91% (24/86) of patients were detected positive by both methods, and 72.09% (62/86) of the patients were detected positive by mNGS technology but negative by microbiological culture method. The consistency test of the results obtained by the two detection methods showed that the difference was not statistically significant (κ=0.02, P>0.05).  Conclusions  The positive rate of pathogen detection in specimens using mNGS technology is higher than that detected by using conventional microbiological culture method, and it can detect pathogens those cannot be detected by the latter, such as Lichtheimia ramosa, Pneumocystis jirovidii, Mycobacterium tuberculosis, viruses, etc. Detection using mNGS technology can help clarify the types of infectious pathogens in burns patients with sepsis, and provide basis and guidance for clinical medication.

     

  • [1]
    马琪敏, 汤文彬, 李孝建, 等. 危重烧伤老年患者早期临床特征的多中心回 顾分析及预后的危险因素分析[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 249-257. DOI: 10.3760/cma.j.cn501225-20230808-00042.
    [2]
    BelbaMK, PetrelaEY, BelbaAG. Epidemiology and outcome analysis of sepsis and organ dysfunction/failure after burns[J]. Burns, 2017, 43(6): 1335-1347. DOI: 10.1016/j.burns.2017.02.017.
    [3]
    TorresMJM, PetersonJM, WolfSE. Detection of infection and sepsis in burns[J]. Surg Infect (Larchmt), 2021, 22(1): 20-27. DOI: 10.1089/sur.2020.348.
    [4]
    WilsonMR, NaccacheSN, SamayoaE, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. N Engl J Med, 2014, 370(25): 2408-2417. DOI: 10.1056/NEJMoa1401268.
    [5]
    WangL, LiS, QinJ, et al. Clinical diagnosis application of metagenomic next-generation sequencing of plasma in suspected sepsis[J]. Infect Drug Resist, 2023,16:891-901. DOI: 10.2147/IDR.S395700.
    [6]
    OverbeekR, LeitlCJ, StollSE, et al. The value of next-generation sequencing in diagnosis and therapy of critically ill patients with suspected bloodstream infections: a retrospective cohort study[J]. J Clin Med, 2024, 13(2): 306. DOI: 10.3390/jcm13020306.
    [7]
    BloemsmaGC, DokterJ, BoxmaH, et al. Mortality and causes of death in a burn centre[J]. Burns, 2008, 34(8): 1103-1107. DOI: 10.1016/j.burns.2008.02.010.
    [8]
    LavrentievaA, VoutsasV, KonoglouM, et al. Determinants of outcome in burn ICU patients with septic shock[J]. J Burn Care Res, 2017, 38(1): e172-e179. DOI: 10.1097/BCR.0000000000000337.
    [9]
    SingerM, DeutschmanCS, SeymourCW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8):801-810. DOI: 10.1001/jama.2016.0287.
    [10]
    曹钰, 柴艳芬, 邓颖, 等. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 感染、炎症、修复, 2019, 20(1): 3-22. DOI: 10.3969/j.issn.1672-8521.2019.01.001.
    [11]
    MillerS, NaccacheSN, SamayoaE, et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid[J]. Genome Res, 2019,29(5):831-842. DOI: 10.1101/gr.238170.118.
    [12]
    BolgerAM, LohseM, UsadelB. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI: 10.1093/bioinformatics/btu170.
    [13]
    LiH, DurbinR. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760. DOI: 10.1093/bioinformatics/btp324.
    [14]
    ZinterMS, DvorakCC, MaydayMY, et al. Pulmonary metagenomic sequencing suggests missed infections in immunocompromised children[J]. Clin Infect Dis, 2019,68(11):1847-1855. DOI: 10.1093/cid/ciy802.
    [15]
    NapolitanoLM. Sepsis 2018: definitions and guideline changes[J]. Surg Infect (Larchmt), 2018,19(2):117-125. DOI: 10.1089/sur.2017.278.
    [16]
    ChiuCY, MillerSA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20(6): 341-355. DOI: 10.1038/s41576-019-0113-7.
    [17]
    WilsonMR, SampleHA, ZornKC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis[J]. N Engl J Med, 2019, 380(24): 2327-2340. DOI: 10.1056/NEJMoa1803396.
    [18]
    ChenY, FengW, YeK, et al. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary infectious pathogens from bronchoalveolar lavage samples[J]. Front Cell Infect Microbiol, 2021,11:541092. DOI: 10.3389/fcimb.2021.541092.
    [19]
    GuW, DengX, LeeM, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids[J]. Nat Med, 2021,27(1):115-124. DOI: 10.1038/s41591-020-1105-z.
    [20]
    QinC, ZhangS, ZhaoY, et al. Diagnostic value of metagenomic next-generation sequencing in sepsis and bloodstream infection[J]. Front Cell Infect Microbiol, 2023, 10 (13): 1117987. DOI: 10.3389/fcimb.2023.1117987.
    [21]
    HuangJ, JiangE, YangD, et al. Metagenomic next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions[J]. Infect Drug Resist, 2020,13:567-576. DOI: 10.2147/IDR.S235182.
    [22]
    HanD, LiZ, LiR, et al. mNGS in clinical microbiology laboratories: on the road to maturity[J]. Crit Rev Microbiol, 2019,45(5/6):668-685. DOI: 10.1080/1040841X.2019.1681933.
    [23]
    SimnerPJ, MillerS, CarrollKC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018,66(5):778-788. DOI: 10.1093/cid/cix881.
    [24]
    AfshinnekooE, ChouC, AlexanderN, et al. Precision metagenomics: rapid metagenomic analyses for infectious disease diagnostics and public health surveillance[J]. J Biomol Tech, 2017,28(1):40-45. DOI: 10.7171/jbt.17-2801-007.
    [25]
    WangY, BeekmanJ, HewJ, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring[J]. Adv Drug Deliv Rev, 2018,123:3-17. DOI: 10.1016/j.addr.2017.09.018.
    [26]
    OryanA, AlemzadehE, MoshiriA. Burn wound healing: present concepts, treatment strategies and future directions[J]. J Wound Care, 2017, 26(1): 5-19. DOI: 10.12968/jowc.2017.26.1.5.
    [27]
    袁志强, 彭毅志. 烧伤重症监护病房多重耐药菌感染的应对策略及思考[J]. 中华烧伤杂志, 2021, 37(6): 524-529. DOI: 10.3760/cma.j.cn501120-20210413-00129.
    [28]
    SalzerHJF, BurchardG, CornelyOA, et al. Diagnosis and management of systemic endemic mycoses causing pulmonary disease[J]. Respiration, 2018, 96(3): 283-301. DOI: 10.1159/000489501.
    [29]
    GuarnerJ, BrandtME. Histopathologic diagnosis of fungal infections in the 21st century[J]. Clin Microbiol Rev, 2011,24(2):247-280. DOI: 10.1128/CMR.00053-10.
    [30]
    LiH, GaoH, MengH, et al. Detection of pulmonary infectious pathogens from lung biopsy tissues by metagenomic next-generation sequencing[J]. Front Cell Infect Microbiol, 2018,8:205. DOI: 10.3389/fcimb.2018.00205.
    [31]
    SokulskaM, KiciaM, WesołowskaM, et al. Pneumocystis jirovecii--from a commensal to pathogen: clinical and diagnostic review[J]. Parasitol Res, 2015,114(10):3577-3585. DOI: 10.1007/s00436-015-4678-6.
    [32]
    CantalupoPG, PipasJM. Detecting viral sequences in NGS data[J]. Curr Opin Virol, 2019,39:41-48. DOI: 10.1016/j.coviro.2019.07.010.
    [33]
    SalterSJ, CoxMJ, TurekEM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses[J]. BMC Biol, 2014,12:87. DOI: 10.1186/s12915-014-0087-z.
    [34]
    Conceição-NetoN, ZellerM, LefrèreH, et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis[J]. Sci Rep, 2015,5:16532. DOI: 10.1038/srep16532.
    [35]
    HengX, CaiP, YuanZ, et al. Efficacy and safety of extracorporeal membrane oxygenation for burn patients: a comprehensive systematic review and meta-analysis[J/OL]. Burns Trauma, 2023,11:tkac056[2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36873286/. DOI: 10.1093/burnst/tkac056.
    [36]
    HuangJ, ChenY, GuoZ, et al. Prospective study and validation of early warning marker discovery based on integrating multi-omics analysis in severe burn patients with sepsis[J/OL]. Burns Trauma, 2023,11:tkac050[2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36659877/. DOI: 10.1093/burnst/tkac050.
  • Relative Articles

    [1]Luo Gaoxing, Li Haisheng, Yuan Zhiqiang, Peng Yizhi. No administering prophylactic systemic antibiotics routinely during the shock phase after burn injury[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(10): 911-914. doi: 10.3760/cma.j.cn501225-20240809-00300
    [2]He Ting, Liu Wei, Shen Chuan'an. Research advances on application of pancreatic stone protein in the early diagnosis of sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(10): 985-988. doi: 10.3760/cma.j.cn501225-20221120-00498
    [3]Pan Xuanliang, Zhu Zhikang, Shen Tao, Jin Fang, Wang Xingang, Yin Jun, Han Chunmao. Epidemiological characteristics and risk factors of sepsis development and death in patients with extremely severe burns[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(6): 558-564. doi: 10.3760/cma.j.cn501225-20220806-00336
    [4]Yao Yongming, Zhang Hui. Rehabilitation strategy for the improvement of long-term outcomes of patients after sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(3): 201-206. doi: 10.3760/cma.j.cn501120-20211004-00344
    [5]Zhang Cheng, Peng Yuan, Luo Xiaoqiang, Li Qimeng, Yang Zichen, Chen Yu, Peng Yizhi, Zhang Yixin, Gong Yali. Epidemiological investigation and analysis of etiological characteristics of infection on 3 067 hospitalized pediatric patients with burns[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(6): 538-545. doi: 10.3760/cma.j.cn501120-20210201-00044
    [6]Luo Rubin, Huang Man, Hu Hang, Zhang Rong, Han Chunmao. Microbiological characteristics of patients with severe burns caused by blast and application of meta- genomics next-generation sequencing in the detection of pathogenic microorganisms[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(10): 946-952. doi: 10.3760/cma.j.cn501120-20201017-00440
    [7]Li Feng, Yin Huinan, Hu Quan, Zhang Qinxue, Chen Qi, Yang Longlong, Chen Xin, Sun Yingjie. Application of metagenomic next-generation sequencing technology in pathogen detection in patients with burns and patients with acute or chronic wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(8): 764-769. doi: 10.3760/cma.j.cn501120-20200623-00322
    [8]Zhang Wenzhu, Miao Ying, Zou Xiaolei. One case of severely scalded patient with pneumonia and sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(6): 503-505. doi: 10.3760/cma.j.cn501120-20190221-00034
    [9]Zhang Cheng, Gong Yali, Luo Xiaoqiang, Liu Meixi, Shi Yunlong, Liu Tengfei, Li Hangyu, Peng Yizhi. Analysis of the pathogenic characteristics of fungal bloodstream infection in severe burn patients[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(1): 37-41. doi: 10.3760/cma.j.issn.1009-2587.2020.01.007
    [10]Yang Zichen, Yuan Zhiqiang, Peng Yizhi. Advances in the research of application of immune modulation of phage in treatment of sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(8): 630-633. doi: 10.3760/cma.j.issn.1009-2587.2019.08.019
    [11]Ren Haitao, Han Chunmao, Zhang Jingjing, Hu Hang, Zhang Rong. Epidemiological investigation of burn patients with Klebsiella pneumoniae infection and the analysis of risk factors for sepsis in them[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(6): 456-458. doi: 10.3760/cma.j.issn.1009-2587.2019.06.011
    [12]Yao Yongming, Luan Yingyi. Precision evaluation of immune status and its significance in sepsis after burns or trauma[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(11): 786-789. doi: 10.3760/cma.j.issn.1009-2587.2018.11.013
    [13]Huan Jingning. Recognizing prevention and treatment of burn sepsis with the concept of holistic integrative medicine[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(4): 196-199. doi: 10.3760/cma.j.issn.1009-2587.2017.04.002
    [14]Niu Xihua, Li Xiaoliang. Prevention and treatment strategy for burn wound sepsis in children[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(2): 71-73. doi: 10.3760/cma.j.issn.1009-2587.2016.02.003
    [15]Gong Yali, Yang Zichen, Yin Supeng, Liu Meixi, Zhang Cheng, Luo Xiaoqiang, Peng Yizhi. Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(9): 529-535. doi: 10.3760/cma.j.issn.1009-2587.2016.09.004
    [16]Zhang Qin, Liao Zhen-jiang. An inquiry into the relevant issues about burn sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(1): 6-8. doi: 10.3760/cma.j.issn.1009-2587.2014.01.003
    [17]CHAI Jia-ke. Diagnosis and comprehensive management of sepsis after burn[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2013, 29(2): 105-108. doi: 10.3760/cma.j.issn.1009-2587.2013.02.003
    [18]YAO Yong-ming, SHENG Zhi-yong, CHAI Jia-ke. The pathogenesis and management of severe sepsis after burns[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(5): 337-339.
    [19]HAO Dai-feng, CHAI Jia-ke, WU Yan-qiu. Cbanges in the expression of rat bepatic lipid metabolism related genes in response to burn wound sepsis as assessed by DNA arrays[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2006, 22(4): 250-253.
    [20]CAO Yong-qian, WANG De-chang. Clinical analysis of severe burn patients with sepsis during shock stage[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(3): 155-157.
  • 史继静.mp4
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200250300
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.2 %FULLTEXT: 5.2 %META: 91.2 %META: 91.2 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.1 %其他: 6.1 %China: 0.2 %China: 0.2 %三明: 0.2 %三明: 0.2 %上海: 0.4 %上海: 0.4 %东莞: 0.2 %东莞: 0.2 %丽水: 0.4 %丽水: 0.4 %九江: 0.4 %九江: 0.4 %仙桃: 0.7 %仙桃: 0.7 %六安: 0.2 %六安: 0.2 %北京: 0.4 %北京: 0.4 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南平: 0.7 %南平: 0.7 %南昌: 0.2 %南昌: 0.2 %南通: 0.4 %南通: 0.4 %台州: 0.2 %台州: 0.2 %合肥: 0.4 %合肥: 0.4 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 4.0 %嘉兴: 4.0 %大连: 2.5 %大连: 2.5 %天津: 0.9 %天津: 0.9 %太原: 1.1 %太原: 1.1 %威海: 2.7 %威海: 2.7 %宁德: 0.2 %宁德: 0.2 %安康: 0.2 %安康: 0.2 %山景城: 0.2 %山景城: 0.2 %张家口: 2.0 %张家口: 2.0 %德阳: 0.4 %德阳: 0.4 %成都: 0.7 %成都: 0.7 %扬州: 1.3 %扬州: 1.3 %文昌: 0.9 %文昌: 0.9 %昆明: 0.9 %昆明: 0.9 %杭州: 0.9 %杭州: 0.9 %榆林: 0.9 %榆林: 0.9 %武汉: 0.2 %武汉: 0.2 %汕头: 0.2 %汕头: 0.2 %池州: 0.7 %池州: 0.7 %沈阳: 0.4 %沈阳: 0.4 %泉州: 0.4 %泉州: 0.4 %泰州: 0.4 %泰州: 0.4 %洛阳: 0.9 %洛阳: 0.9 %济南: 0.2 %济南: 0.2 %海西: 0.4 %海西: 0.4 %淮北: 2.7 %淮北: 2.7 %淮南: 0.4 %淮南: 0.4 %淮安: 0.2 %淮安: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 1.3 %温州: 1.3 %湖州: 1.3 %湖州: 1.3 %漯河: 2.5 %漯河: 2.5 %漳州: 0.2 %漳州: 0.2 %潜江: 1.3 %潜江: 1.3 %烟台: 0.2 %烟台: 0.2 %珠海: 1.6 %珠海: 1.6 %石家庄: 0.2 %石家庄: 0.2 %福州: 2.9 %福州: 2.9 %自贡: 1.8 %自贡: 1.8 %舟山: 7.9 %舟山: 7.9 %芒廷维尤: 5.8 %芒廷维尤: 5.8 %芝加哥: 2.0 %芝加哥: 2.0 %苏州: 4.5 %苏州: 4.5 %荆州: 0.2 %荆州: 0.2 %荆门: 0.7 %荆门: 0.7 %莆田: 0.4 %莆田: 0.4 %莱芜: 1.6 %莱芜: 1.6 %葫芦岛: 0.7 %葫芦岛: 0.7 %衢州: 0.4 %衢州: 0.4 %襄阳: 0.2 %襄阳: 0.2 %西宁: 1.8 %西宁: 1.8 %西安: 2.5 %西安: 2.5 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.4 %邵阳: 0.4 %郑州: 0.9 %郑州: 0.9 %重庆: 9.7 %重庆: 9.7 %金华: 2.2 %金华: 2.2 %铜川: 0.4 %铜川: 0.4 %长沙: 0.2 %长沙: 0.2 %随州: 0.7 %随州: 0.7 %鞍山: 1.8 %鞍山: 1.8 %鹰潭: 0.9 %鹰潭: 0.9 %黄石: 0.4 %黄石: 0.4 %其他China三明上海东莞丽水九江仙桃六安北京十堰南京南平南昌南通台州合肥哥伦布嘉兴大连天津太原威海宁德安康山景城张家口德阳成都扬州文昌昆明杭州榆林武汉汕头池州沈阳泉州泰州洛阳济南海西淮北淮南淮安深圳温州湖州漯河漳州潜江烟台珠海石家庄福州自贡舟山芒廷维尤芝加哥苏州荆州荆门莆田莱芜葫芦岛衢州襄阳西宁西安邯郸邵阳郑州重庆金华铜川长沙随州鞍山鹰潭黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (404) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return