Citation: | Shi JJ,Zhao L,Li XL,et al.Analysis of the characteristics of infectious pathogens in burn patients with sepsis based on metagenomic next-generation sequencing technology[J].Chin J Burns Wounds,2024,40(10):940-947.DOI: 10.3760/cma.j.cn501225-20240418-00137. |
[1] |
马琪敏, 汤文彬, 李孝建, 等. 危重烧伤老年患者早期临床特征的多中心回 顾分析及预后的危险因素分析[J]. 中华烧伤与创面修复杂志, 2024, 40(3): 249-257. DOI: 10.3760/cma.j.cn501225-20230808-00042.
|
[2] |
BelbaMK, PetrelaEY, BelbaAG. Epidemiology and outcome analysis of sepsis and organ dysfunction/failure after burns[J]. Burns, 2017, 43(6): 1335-1347. DOI: 10.1016/j.burns.2017.02.017.
|
[3] |
TorresMJM, PetersonJM, WolfSE. Detection of infection and sepsis in burns[J]. Surg Infect (Larchmt), 2021, 22(1): 20-27. DOI: 10.1089/sur.2020.348.
|
[4] |
WilsonMR, NaccacheSN, SamayoaE, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. N Engl J Med, 2014, 370(25): 2408-2417. DOI: 10.1056/NEJMoa1401268.
|
[5] |
WangL, LiS, QinJ, et al. Clinical diagnosis application of metagenomic next-generation sequencing of plasma in suspected sepsis[J]. Infect Drug Resist, 2023,16:891-901. DOI: 10.2147/IDR.S395700.
|
[6] |
OverbeekR, LeitlCJ, StollSE, et al. The value of next-generation sequencing in diagnosis and therapy of critically ill patients with suspected bloodstream infections: a retrospective cohort study[J]. J Clin Med, 2024, 13(2): 306. DOI: 10.3390/jcm13020306.
|
[7] |
BloemsmaGC, DokterJ, BoxmaH, et al. Mortality and causes of death in a burn centre[J]. Burns, 2008, 34(8): 1103-1107. DOI: 10.1016/j.burns.2008.02.010.
|
[8] |
LavrentievaA, VoutsasV, KonoglouM, et al. Determinants of outcome in burn ICU patients with septic shock[J]. J Burn Care Res, 2017, 38(1): e172-e179. DOI: 10.1097/BCR.0000000000000337.
|
[9] |
SingerM, DeutschmanCS, SeymourCW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8):801-810. DOI: 10.1001/jama.2016.0287.
|
[10] |
曹钰, 柴艳芬, 邓颖, 等. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 感染、炎症、修复, 2019, 20(1): 3-22. DOI: 10.3969/j.issn.1672-8521.2019.01.001.
|
[11] |
MillerS, NaccacheSN, SamayoaE, et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid[J]. Genome Res, 2019,29(5):831-842. DOI: 10.1101/gr.238170.118.
|
[12] |
BolgerAM, LohseM, UsadelB. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI: 10.1093/bioinformatics/btu170.
|
[13] |
LiH, DurbinR. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760. DOI: 10.1093/bioinformatics/btp324.
|
[14] |
ZinterMS, DvorakCC, MaydayMY, et al. Pulmonary metagenomic sequencing suggests missed infections in immunocompromised children[J]. Clin Infect Dis, 2019,68(11):1847-1855. DOI: 10.1093/cid/ciy802.
|
[15] |
NapolitanoLM. Sepsis 2018: definitions and guideline changes[J]. Surg Infect (Larchmt), 2018,19(2):117-125. DOI: 10.1089/sur.2017.278.
|
[16] |
ChiuCY, MillerSA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20(6): 341-355. DOI: 10.1038/s41576-019-0113-7.
|
[17] |
WilsonMR, SampleHA, ZornKC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis[J]. N Engl J Med, 2019, 380(24): 2327-2340. DOI: 10.1056/NEJMoa1803396.
|
[18] |
ChenY, FengW, YeK, et al. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary infectious pathogens from bronchoalveolar lavage samples[J]. Front Cell Infect Microbiol, 2021,11:541092. DOI: 10.3389/fcimb.2021.541092.
|
[19] |
GuW, DengX, LeeM, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids[J]. Nat Med, 2021,27(1):115-124. DOI: 10.1038/s41591-020-1105-z.
|
[20] |
QinC, ZhangS, ZhaoY, et al. Diagnostic value of metagenomic next-generation sequencing in sepsis and bloodstream infection[J]. Front Cell Infect Microbiol, 2023, 10 (13): 1117987. DOI: 10.3389/fcimb.2023.1117987.
|
[21] |
HuangJ, JiangE, YangD, et al. Metagenomic next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions[J]. Infect Drug Resist, 2020,13:567-576. DOI: 10.2147/IDR.S235182.
|
[22] |
HanD, LiZ, LiR, et al. mNGS in clinical microbiology laboratories: on the road to maturity[J]. Crit Rev Microbiol, 2019,45(5/6):668-685. DOI: 10.1080/1040841X.2019.1681933.
|
[23] |
SimnerPJ, MillerS, CarrollKC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018,66(5):778-788. DOI: 10.1093/cid/cix881.
|
[24] |
AfshinnekooE, ChouC, AlexanderN, et al. Precision metagenomics: rapid metagenomic analyses for infectious disease diagnostics and public health surveillance[J]. J Biomol Tech, 2017,28(1):40-45. DOI: 10.7171/jbt.17-2801-007.
|
[25] |
WangY, BeekmanJ, HewJ, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring[J]. Adv Drug Deliv Rev, 2018,123:3-17. DOI: 10.1016/j.addr.2017.09.018.
|
[26] |
OryanA, AlemzadehE, MoshiriA. Burn wound healing: present concepts, treatment strategies and future directions[J]. J Wound Care, 2017, 26(1): 5-19. DOI: 10.12968/jowc.2017.26.1.5.
|
[27] |
袁志强, 彭毅志. 烧伤重症监护病房多重耐药菌感染的应对策略及思考[J]. 中华烧伤杂志, 2021, 37(6): 524-529. DOI: 10.3760/cma.j.cn501120-20210413-00129.
|
[28] |
SalzerHJF, BurchardG, CornelyOA, et al. Diagnosis and management of systemic endemic mycoses causing pulmonary disease[J]. Respiration, 2018, 96(3): 283-301. DOI: 10.1159/000489501.
|
[29] |
GuarnerJ, BrandtME. Histopathologic diagnosis of fungal infections in the 21st century[J]. Clin Microbiol Rev, 2011,24(2):247-280. DOI: 10.1128/CMR.00053-10.
|
[30] |
LiH, GaoH, MengH, et al. Detection of pulmonary infectious pathogens from lung biopsy tissues by metagenomic next-generation sequencing[J]. Front Cell Infect Microbiol, 2018,8:205. DOI: 10.3389/fcimb.2018.00205.
|
[31] |
SokulskaM, KiciaM, WesołowskaM, et al. Pneumocystis jirovecii--from a commensal to pathogen: clinical and diagnostic review[J]. Parasitol Res, 2015,114(10):3577-3585. DOI: 10.1007/s00436-015-4678-6.
|
[32] |
CantalupoPG, PipasJM. Detecting viral sequences in NGS data[J]. Curr Opin Virol, 2019,39:41-48. DOI: 10.1016/j.coviro.2019.07.010.
|
[33] |
SalterSJ, CoxMJ, TurekEM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses[J]. BMC Biol, 2014,12:87. DOI: 10.1186/s12915-014-0087-z.
|
[34] |
Conceição-NetoN, ZellerM, LefrèreH, et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis[J]. Sci Rep, 2015,5:16532. DOI: 10.1038/srep16532.
|
[35] |
HengX, CaiP, YuanZ, et al. Efficacy and safety of extracorporeal membrane oxygenation for burn patients: a comprehensive systematic review and meta-analysis[J/OL]. Burns Trauma, 2023,11:tkac056[2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36873286/. DOI: 10.1093/burnst/tkac056.
|
[36] |
HuangJ, ChenY, GuoZ, et al. Prospective study and validation of early warning marker discovery based on integrating multi-omics analysis in severe burn patients with sepsis[J/OL]. Burns Trauma, 2023,11:tkac050[2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36659877/. DOI: 10.1093/burnst/tkac050.
|
史继静.mp4 |