Volume 40 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Yao YM,Zhang H,Dong N.Classification of sepsis: the cornerstone for precise treatment[J].Chin J Burns Wounds,2024,40(10):915-919.DOI: 10.3760/cma.j.cn501225-20240529-00203.
Citation: Yao YM,Zhang H,Dong N.Classification of sepsis: the cornerstone for precise treatment[J].Chin J Burns Wounds,2024,40(10):915-919.DOI: 10.3760/cma.j.cn501225-20240529-00203.

Classification of sepsis: the cornerstone for precise treatment

doi: 10.3760/cma.j.cn501225-20240529-00203
Funds:

Key Program of National Natural Science Foundation of China 82130062, 82241062

National Key Research and Development Program of China 2022YFA1104604

More Information
  • Corresponding author: Yao Yongming, Email: c_ff@sina.com
  • Received Date: 2024-05-29
  • Sepsis appears to be a heterogeneous clinical syndrome. The classification of patients with sepsis is the prerequisite for improving the efficiency of clinical management and is also the basis for achieving precise treatment of sepsis. In recent years, many studies at home and abroad have classified patients with sepsis based on data including their clinical characteristics, laboratory biomarkers, and genomics. This article briefly analyzed several sepsis classification methods that are currently well recognized, with a view to providing new ideas for building a standardized diagnosis and treatment system for sepsis.

     

  • loading
  • [1]
    SingerM,DeutschmanCS,SeymourCW,et al.The third international consensus definitions for sepsis and septic shock (sepsis-3)[J].JAMA,2016,315(8):801-810.DOI: 10.1001/jama.2016.0287.
    [2]
    张卉,冯永文,姚咏明.深刻理解烧创伤脓毒症发病机制的网络效应[J].中华医学杂志,2020,100(12):881-885.DOI: 10.3760/cma.j.cn112137-20191129-02603.
    [3]
    HasegawaD,NishidaO.Patient selection in sepsis: precision medicine using phenotypes and its implications for future clinical trial design[J].J Thorac Dis,2019,11(9):3672-3675.DOI: 10.21037/jtd.2019.09.31.
    [4]
    SeymourCW,GomezH,ChangCH,et al.Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness[J].Crit Care,2017,21(1):257.DOI: 10.1186/s13054-017-1836-5.
    [5]
    SeymourCW,KennedyJN,WangS,et al.Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis[J].JAMA,2019,321(20):2003-2017.DOI: 10.1001/jama.2019.5791.
    [6]
    ChenX,LiJ,LiuG,et al.Identification of distinct clinical phenotypes of heterogeneous mechanically ventilated ICU patients using cluster analysis[J].J Clin Med,2023,12(4):1499. DOI: 10.3390/jcm12041499.
    [7]
    水鹏飞,王妍秀,王彬,等.人工智能方式推导脓毒症临床表型及临床结局的研究[J].智慧健康,2023,9(18):218-221.DOI: 10.19335/j.cnki.2096-1219.2023.18.052.
    [8]
    CalfeeCS,DelucchiK,ParsonsPE,et al.Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J].Lancet Respir Med,2014,2(8):611-620.DOI: 10.1016/S2213-2600(14)70097-9.
    [9]
    SinhaP,DelucchiKL,ThompsonBT,et al.Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study[J].Intensive Care Med,2018,44(11):1859-1869.DOI: 10.1007/s00134-018-5378-3.
    [10]
    BhavaniSV,CareyKA,GilbertER,et al.Identifying novel sepsis subphenotypes using temperature trajectories[J].Am J Respir Crit Care Med,2019,200(3):327-335.DOI: 10.1164/rccm.201806-1197OC.
    [11]
    BhavaniSV,WolfeKS,HruschCL,et al.Temperature trajectory subphenotypes correlate with immune responses in patients with sepsis[J].Crit Care Med,2020,48(11):1645-1653.DOI: 10.1097/CCM.0000000000004610.
    [12]
    ZhangZ,HoKM,GuH,et al.Defining persistent critical illness based on growth trajectories in patients with sepsis[J].Crit Care,2020,24(1):57.DOI: 10.1186/s13054-020-2768-z.
    [13]
    VolkHD,ReinkeP,KrauschD,et al.Monocyte deactivation--rationale for a new therapeutic strategy in sepsis[J].Intensive Care Med,1996,22Suppl 4:S474-481.DOI: 10.1007/BF01743727.
    [14]
    DavenportEE,BurnhamKL,RadhakrishnanJ,et al.Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study[J].Lancet Respir Med,2016,4(4):259-271.DOI: 10.1016/S2213-2600(16)00046-1.
    [15]
    ZhangZ,PanQ,GeH,et al.Deep learning-based clustering robustly identified two classes of sepsis with both prognostic and predictive values[J].EBioMedicine,2020,62:103081.DOI: 10.1016/j.ebiom.2020.103081.
    [16]
    SciclunaBP,van VughtLA,ZwindermanAH,et al.Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study[J].Lancet Respir Med,2017,5(10):816-826.DOI: 10.1016/S2213-2600(17)30294-1.
    [17]
    van AmstelR,KennedyJN,SciclunaBP,et al.Uncovering heterogeneity in sepsis: a comparative analysis of subphenotypes[J].Intensive Care Med,2023,49(11):1360-1369.DOI: 10.1007/s00134-023-07239-w.
    [18]
    MaP,LiuJ,ShenF,et al.Individualized resuscitation strategy for septic shock formalized by finite mixture modeling and dynamic treatment regimen[J].Crit Care,2021,25(1):243.DOI: 10.1186/s13054-021-03682-7.
    [19]
    BhavaniSV,SemlerM,QianET,et al.Development and validation of novel sepsis subphenotypes using trajectories of vital signs[J].Intensive Care Med,2022,48(11):1582-1592.DOI: 10.1007/s00134-022-06890-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (79) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return