Citation: | Yao YM,Zhang H,Dong N.Classification of sepsis: the cornerstone for precise treatment[J].Chin J Burns Wounds,2024,40(10):915-919.DOI: 10.3760/cma.j.cn501225-20240529-00203. |
[1] |
SingerM,DeutschmanCS,SeymourCW,et al.The third international consensus definitions for sepsis and septic shock (sepsis-3)[J].JAMA,2016,315(8):801-810.DOI: 10.1001/jama.2016.0287.
|
[2] |
张卉,冯永文,姚咏明.深刻理解烧创伤脓毒症发病机制的网络效应[J].中华医学杂志,2020,100(12):881-885.DOI: 10.3760/cma.j.cn112137-20191129-02603.
|
[3] |
HasegawaD,NishidaO.Patient selection in sepsis: precision medicine using phenotypes and its implications for future clinical trial design[J].J Thorac Dis,2019,11(9):3672-3675.DOI: 10.21037/jtd.2019.09.31.
|
[4] |
SeymourCW,GomezH,ChangCH,et al.Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness[J].Crit Care,2017,21(1):257.DOI: 10.1186/s13054-017-1836-5.
|
[5] |
SeymourCW,KennedyJN,WangS,et al.Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis[J].JAMA,2019,321(20):2003-2017.DOI: 10.1001/jama.2019.5791.
|
[6] |
ChenX,LiJ,LiuG,et al.Identification of distinct clinical phenotypes of heterogeneous mechanically ventilated ICU patients using cluster analysis[J].J Clin Med,2023,12(4):1499. DOI: 10.3390/jcm12041499.
|
[7] |
水鹏飞,王妍秀,王彬,等.人工智能方式推导脓毒症临床表型及临床结局的研究[J].智慧健康,2023,9(18):218-221.DOI: 10.19335/j.cnki.2096-1219.2023.18.052.
|
[8] |
CalfeeCS,DelucchiK,ParsonsPE,et al.Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J].Lancet Respir Med,2014,2(8):611-620.DOI: 10.1016/S2213-2600(14)70097-9.
|
[9] |
SinhaP,DelucchiKL,ThompsonBT,et al.Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study[J].Intensive Care Med,2018,44(11):1859-1869.DOI: 10.1007/s00134-018-5378-3.
|
[10] |
BhavaniSV,CareyKA,GilbertER,et al.Identifying novel sepsis subphenotypes using temperature trajectories[J].Am J Respir Crit Care Med,2019,200(3):327-335.DOI: 10.1164/rccm.201806-1197OC.
|
[11] |
BhavaniSV,WolfeKS,HruschCL,et al.Temperature trajectory subphenotypes correlate with immune responses in patients with sepsis[J].Crit Care Med,2020,48(11):1645-1653.DOI: 10.1097/CCM.0000000000004610.
|
[12] |
ZhangZ,HoKM,GuH,et al.Defining persistent critical illness based on growth trajectories in patients with sepsis[J].Crit Care,2020,24(1):57.DOI: 10.1186/s13054-020-2768-z.
|
[13] |
VolkHD,ReinkeP,KrauschD,et al.Monocyte deactivation--rationale for a new therapeutic strategy in sepsis[J].Intensive Care Med,1996,22Suppl 4:S474-481.DOI: 10.1007/BF01743727.
|
[14] |
DavenportEE,BurnhamKL,RadhakrishnanJ,et al.Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study[J].Lancet Respir Med,2016,4(4):259-271.DOI: 10.1016/S2213-2600(16)00046-1.
|
[15] |
ZhangZ,PanQ,GeH,et al.Deep learning-based clustering robustly identified two classes of sepsis with both prognostic and predictive values[J].EBioMedicine,2020,62:103081.DOI: 10.1016/j.ebiom.2020.103081.
|
[16] |
SciclunaBP,van VughtLA,ZwindermanAH,et al.Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study[J].Lancet Respir Med,2017,5(10):816-826.DOI: 10.1016/S2213-2600(17)30294-1.
|
[17] |
van AmstelR,KennedyJN,SciclunaBP,et al.Uncovering heterogeneity in sepsis: a comparative analysis of subphenotypes[J].Intensive Care Med,2023,49(11):1360-1369.DOI: 10.1007/s00134-023-07239-w.
|
[18] |
MaP,LiuJ,ShenF,et al.Individualized resuscitation strategy for septic shock formalized by finite mixture modeling and dynamic treatment regimen[J].Crit Care,2021,25(1):243.DOI: 10.1186/s13054-021-03682-7.
|
[19] |
BhavaniSV,SemlerM,QianET,et al.Development and validation of novel sepsis subphenotypes using trajectories of vital signs[J].Intensive Care Med,2022,48(11):1582-1592.DOI: 10.1007/s00134-022-06890-z.
|