Citation: | Hu Yanan,Xie Tingjun,Liu Yuanbo,et al.Clinical effect of indocyanine green angiography in designing and harvesting expanded flaps for scar excision wound repair[J].Chin J Burns Wounds,2025,41(4):1-7.DOI: 10.3760/cma.j.cn501225-20250108-00013. |
[1] |
GuoY, SongY, XiongS, et al. Mechanical stretch induced skin regeneration: molecular and cellular mechanism in skin soft tissue expansion[J]. Int J Mol Sci, 2022,23(17): 9622. DOI: 10.3390/ijms23179622.
|
[2] |
RadwanAM, ZideMF. Tissue expansion in the head and neck[J]. Atlas Oral Maxillofac Surg Clin North Am, 2019,27(2):167-173. DOI: 10.1016/j.cxom.2019.05.010.
|
[3] |
TongX, LuJ, ZhangW, et al. Efficacy and safety of external tissue expansion technique in the treatment of soft tissue defects: a systematic review and meta-analysis of outcomes and complication rates[J/OL]. Burns Trauma, 2022,10:tkac045[2025-01-08]. https://pubmed.ncbi.nlm.nih.gov/36518877/. DOI: 10.1093/burnst/tkac045.
|
[4] |
张伟, 张卫东, 陈斓, 等. 扩张皮瓣整复大面积烧伤后面颈部瘢痕挛缩畸形的临床效果[J]. 中华烧伤与创面修复杂志, 2023, 39(9):826-834. DOI: 10.3760/cma.j.cn501225-20230706-00248.
|
[5] |
ZideBM, KarpNS. Maximizing gain from rectangular tissue expanders[J]. Plast Reconstr Surg, 1992,90(3):500-504; discussion 505-506.
|
[6] |
CherryGW, AustadE, PasykK, et al. Increased survival and vascularity of random-pattern skin flaps elevated in controlled, expanded skin[J]. Plast Reconstr Surg, 1983,72(5):680-687. DOI: 10.1097/00006534-198311000-00018.
|
[7] |
ZhuH, XieY, XieF, et al. Prevention of necrosis of adjacent expanded flaps by surgical delay[J]. Ann Plast Surg, 2014,73(5):525-530. DOI: 10.1097/SAP.0b013e31827fafce.
|
[8] |
XieT, LiuY, ZhuS, et al. Finding perforator "freeway" for design optimization of expanded flaps by indocyanine green angiography[J]. Plast Reconstr Surg, 2025,155(2):414e-418e. DOI: 10.1097/PRS.0000000000011545.
|
[9] |
TaylorGI, ChubbDP, AshtonMW. True and 'choke' anastomoses between perforator angiosomes: part Ⅰ. anatomical location[J]. Plast Reconstr Surg, 2013,132(6):1447-1456. DOI: 10.1097/PRS.0b013e3182a80638.
|
[10] |
OgawaR, OkiK, HyakusokuH. Skin perforator freeways and pathways: understanding the role of true and choke anastomoses between perforator angiosomes and their impact on skin flap planning and outcomes[J]. Plast Reconstr Surg, 2014,133(5):719e-720e. DOI: 10.1097/PRS.0000000000000139.
|
[11] |
AltafFM. The anatomical basis of the medial sural artery perforator flaps[J]. West Indian Med J, 2011,60(6):622-627.
|
[12] |
GurtnerGC, JonesGE, NeliganPC, et al. Intraoperative laser angiography using the SPY system: review of the literature and recommendations for use[J]. Ann Surg Innov Res, 2013,7(1):1. DOI: 10.1186/1750-1164-7-1.
|
[13] |
NarushimaM, YamasobaT, IidaT, et al. Pure skin perforator flaps: the anatomical vascularity of the superthin flap[J]. Plast Reconstr Surg, 2018,142(3):351e-360e. DOI: 10.1097/PRS.0000000000004698.
|
[14] |
Saint-CyrM, WongC, SchaverienM, et al. The perforasome theory: vascular anatomy and clinical implications[J]. Plast Reconstr Surg, 2009,124(5):1529-1544. DOI: 10.1097/PRS.0b013e3181b98a6c.
|
[15] |
HyakusokuH, GaoJH, PenningtonDG, et al. The microvascular augmented subdermal vascular network (ma-SVN) flap: its variations and recent development in using intercostal perforators[J]. Br J Plast Surg, 2002,55(5):402-411. DOI: 10.1054/bjps.2002.3865.
|
[16] |
LiuY, ZangM, ZhuS, et al. Pre-expanded paraumbilical perforator flap[J]. Clin Plast Surg, 2017,44(1):99-108. DOI: 10.1016/j.cps.2016.08.003.
|
[17] |
OnodaS, AzumiS, HasegawaK, et al. Preoperative identification of perforator vessels by combining MDCT, doppler flowmetry, and ICG fluorescent angiography[J]. Microsurgery, 2013,33(4):265-269. DOI: 10.1002/micr.22079.
|
[18] |
Vander KolkCA, McCannJJ, KnightKR, et al. Some further characteristics of expanded tissue[J]. Clin Plast Surg, 1987,14(3):447-453.
|
[19] |
ChanP, ColonAF, CluneJ, et al. External tissue expansion in complex extremity reconstruction[J]. J Hand Surg Am, 2021,46(12):1094-1103. DOI: 10.1016/j.jhsa.2021.07.039.
|
[20] |
ErogluS, BuyukdoganH, DuranA. Direct-to-implant retropectoral dual plane approach with autologous inferior-based dermal flap: does spy-elite laser angiographic system reduce complication rates?[J]. Aesthetic Plast Surg, 2024,48(21):4414-4420. DOI: 10.1007/s00266-024-04075-1.
|
[21] |
TaghizadehF, TroobSH, WaxMK. The role of fluorescent angiography in free flap reconstruction of the head and neck[J]. Laryngoscope, 2023,133(6):1388-1393. DOI: 10.1002/lary.30450.
|
[22] |
GoncalvesLN, van den HovenP, van SchaikJ, et al. Perfusion parameters in near-infrared fluorescence imaging with indocyanine green: a systematic review of the literature[J]. Life (Basel), 2021,11(5):433. DOI: 10.3390/life11050433.
|
[23] |
YangCE, ChungSW, LeeDW, et al. Evaluation of the relationship between flap tension and tissue perfusion in implant-based breast reconstruction using laser-assisted indocyanine green angiography[J]. Ann Surg Oncol, 2018,25(8):2235-2240. DOI: 10.1245/s10434-018-6527-1.
|
[24] |
王石, 董帅, 曹阳, 等. 高选择性动脉吲哚菁绿造影在游离股前外侧皮瓣设计中的应用[J]. 中华烧伤与创面修复杂志, 2024, 40(10): 948-954. DOI: 10.3760/cma.j.cn501225-20240513-00174.
|
[25] |
WangC, ZhangJ, HyakusokuH, et al. An overview of pre-expanded perforator flaps: part 2, clinical applications[J]. Clin Plast Surg, 2017,44(1):13-20. DOI: 10.1016/j.cps.2016.09.007.
|
[26] |
TanO, AtikB, BekereciogluM. Supercharged reverse-flow sural flap: a new modification increasing the reliability of the flap[J]. Microsurgery, 2005,25(1):36-43. DOI: 10.1002/micr.20072.
|
[27] |
KimuraN, SaitohM, OkamuraT, et al. Concept and anatomical basis of microdissected tailoring method for free flap transfer[J]. Plast Reconstr Surg, 2009,123(1):152-162. DOI: 10.1097/PRS.0b013e3181934756.
|
[28] |
DriessenC, ArnardottirTH, LorenzoAR, et al. How should indocyanine green dye angiography be assessed to best predict mastectomy skin flap necrosis? A systematic review[J]. J Plast Reconstr Aesthet Surg, 2020,73(6):1031-1042. DOI: 10.1016/j.bjps.2020.02.025.
|
[29] |
BigcasJM, DeBiaseCA, HoT. Indocyanine green angiography as the principal design and perfusion assessment tool for the supraclavicular artery island flap in head and neck reconstruction[J]. Cureus, 2022,14(9):e29007. DOI: 10.7759/cureus.29007.
|
[30] |
GelişkenF. Indocyanine green angiography[J]. Turk J Ophthalmol, 2024,54(1):38-45. DOI: 10.4274/tjo.galenos.2023.89735.
|
[31] |
PanettellaT, MeroniM, ScaglioniMF. How to increase the success rate in microsurgical free and pedicled flap reconstructions with intraoperative multistep ICG imaging: a case series with 400 consecutive cases[J]. J Plast Reconstr Aesthet Surg, 2024,97:147-155. DOI: 10.1016/j.bjps.2024.07.047.
|
[32] |
WangM, ZangM, ZhuS, et al. Utility of indocyanine green angiography for preventing pre-expanded extended lower trapezius myocutaneous flap necrosis: how to make the correct decision for hypoperfused areas[J]. J Reconstr Microsurg, 2023,39(5):383-391. DOI: 10.1055/a-1939-5606.
|
[33] |
MattisonGL, LewisPG, GuptaSC, et al. SPY imaging use in postmastectomy breast reconstruction patients: preventative or overly conservative?[J]. Plast Reconstr Surg, 2016,138(1):15e-21e. DOI: 10.1097/PRS.0000000000002266.
|
[34] |
LiuEH, ZhuSL, HuJ, et al. Intraoperative SPY reduces post-mastectomy skin flap complications: a systematic review and meta-analysis[J]. Plast Reconstr Surg Glob Open, 2019,7(4):e2060. DOI: 10.1097/GOX.0000000000002060.
|
[35] |
ZhangY, XiaoW, NgS, et al. Infrared thermography-guided designing and harvesting of pre-expanded pedicled flap for head and neck reconstruction[J]. J Plast Reconstr Aesthet Surg, 2021,74(9):2068-2075. DOI: 10.1016/j.bjps.2020.12.102.
|