留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物相容性材料在治疗糖尿病创面中的应用研究进展

刘开拓 胡大海

刘开拓, 胡大海. 生物相容性材料在治疗糖尿病创面中的应用研究进展[J]. 中华烧伤杂志, 2021, 37(9): 889-894. DOI: 10.3760/cma.j.cn501120-20200619-00316.
引用本文: 刘开拓, 胡大海. 生物相容性材料在治疗糖尿病创面中的应用研究进展[J]. 中华烧伤杂志, 2021, 37(9): 889-894. DOI: 10.3760/cma.j.cn501120-20200619-00316.
Liu KT,Hu DH.Research advances on the application of biocompatible materials in treating diabetic wounds[J].Chin J Burns,2021,37(9):889-894.DOI: 10.3760/cma.j.cn501120-20200619-00316.
Citation: Liu KT,Hu DH.Research advances on the application of biocompatible materials in treating diabetic wounds[J].Chin J Burns,2021,37(9):889-894.DOI: 10.3760/cma.j.cn501120-20200619-00316.

生物相容性材料在治疗糖尿病创面中的应用研究进展

doi: 10.3760/cma.j.cn501120-20200619-00316
基金项目: 

国家自然科学基金青年科学基金 81501666

详细信息
    通讯作者:

    胡大海,Email:hudhai@fmmu.edu.cn

Research advances on the application of biocompatible materials in treating diabetic wounds

Funds: 

Youth Science Foundation of National Natural Science Foundation of China 81501666

More Information
  • 摘要: 目前多种生物相容性材料已经被应用于糖尿病创面的治疗中,且部分生物相容性材料发挥了重要作用。虽然生物相容性材料具有减少创面暴露、创面张力,提供促进细胞增殖、迁移的微环境等优点,但是仍然存在效果不稳定、机制不明确的不足。因此,本文综述了近期将生物相容性材料用于治疗糖尿病创面的进展,并讨论了生物相容性材料领域可能的发展方向。

     

  • 参考文献(54)

    [1] 罗高兴, 吴军. 现代功能材料促进皮肤创面修复[J]. 中华烧伤杂志, 2020, 36(12): 1113-1116. DOI: 10.3760/cma.j.cn501120-20201015-00436.
    [2] FuiLW,LokMPW, GovindasamyV, et al. Understanding the multifaceted mechanisms of diabetic wound healing and therapeutic application of stem cells conditioned medium in the healing process[J]. J Tissue Eng Regen Med, 2019, 13(12): 2218-2233. DOI: 10.1002/term.2966.
    [3] SinghO,GuptaSS,SoniM, et al.Collagen dressing versus conventional dressings in burn and chronic wounds: a retrospective study[J].J Cutan Aesthet Surg,2011,4(1):12-16.DOI: 10.4103/0974-2077.79180.
    [4] MiguelSP,RibeiroMP, BrancalH, et al. Thermoresponsive chitosan-agarose hydrogel for skin regeneration[J]. Carbohydr Polym, 2014, 111: 366-373. DOI: 10.1016/j.carbpol.2014.04.093.
    [5] WeiSK,XuPC,YaoZX, et al.A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes[J].Acta Biomater,2021,124:205-218.DOI: 10.1016/j.actbio.2021.01.046.
    [6] WangM,WangCG, ChenM, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release[J]. ACS Nano, 2019, 13(9): 10279-10293. DOI: 10.1021/acsnano.9b03656.
    [7] 屠卓隆,林才.姜黄素对糖尿病创面的促愈合作用及其机制研究进展[J].中华烧伤杂志,2021,37(4):391-394.DOI: 10.3760/cma.j.cn501120-20200224-00089.
    [8] QuJ,ZhaoX, LiangYP, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing[J]. Biomaterials, 2018, 183: 185-199. DOI: 10.1016/j.biomaterials.2018.08.044.
    [9] OkonkwoUA,DiPietroLA.Diabetes and wound angiogenesis[J].Int J Mol Sci,2017,18(7):1419.DOI: 10.3390/ijms18071419.
    [10] HuSC, LanCE. High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing[J]. J Dermatol Sci, 2016, 84(2): 121-127. DOI: 10.1016/j.jdermsci.2016.07.008.
    [11] ShiekhPA,SinghA, KumarA. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing[J]. Biomaterials, 2020, 249: 120020. DOI: 10.1016/j.biomaterials.2020.120020.
    [12] GaoWD, JinWW, LiYN, et al. A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing[J]. J Mater Chem B, 2017, 5(35): 7285-7296. DOI: 10.1039/c7tb01484h.
    [13] KasiewiczLN, WhiteheadKA. Recent advances in biomaterials for the treatment of diabetic foot ulcers[J]. Biomater Sci, 2017,5(10):1962-1975. DOI: 10.1039/c7bm00264e.
    [14] CastañoO,Pérez-AmodioS,Navarro-RequenaC, et al.Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms[J].Adv Drug Deliv Rev,2018,129:95-117.DOI: 10.1016/j.addr.2018.03.012.
    [15] JeongS,KimB, ParkM, et al. Improved diabetic wound healing by EGF encapsulation in gelatin-alginate coacervates[J]. Pharmaceutics, 2020, 12(4): 334. DOI: 10.3390/pharmaceutics12040334.
    [16] LuQQ,LiMM,ZouY, et al.Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis[J].J Control Release,2014,174:43-50.DOI: 10.1016/j.jconrel.2013.11.007.
    [17] DingS, XuY,YanX, et al.Effect of collagen scaffold with Bcl-2-modified adipose-derived stem cells on diabetic mice wound healing[J].Int J Low Extrem Wounds,2020,19(2):139-147.DOI: 10.1177/1534734619880055.
    [18] ZhongSP,ZhangYZ, LimCT. Tissue scaffolds for skin wound healing and dermal reconstruction[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010, 2(5): 510-525. DOI: 10.1002/wnan.100.
    [19] NieuwdorpM,HollemanF, de GrootE, et al. Perturbation of hyaluronan metabolism predisposes patients with type 1 diabetes mellitus to atherosclerosis[J]. Diabetologia, 2007, 50(6): 1288-1293. DOI: 10.1007/s00125-007-0666-4.
    [20] BohnG,LidenB, SchultzG, et al. Ovine-based collagen matrix dressing: next-generation collagen dressing for wound care[J]. Adv Wound Care (New Rochelle), 2016, 5(1): 1-10. DOI: 10.1089/wound.2015.0660.
    [21] BriquezPS,HubbellJA, MartinoMM. Extracellular matrix-inspired growth factor delivery systems for skin wound healing[J]. Adv Wound Care (New Rochelle), 2015, 4(8): 479-489. DOI: 10.1089/wound.2014.0603.
    [22] 薛春利,胡志成,杨祖贤,等.异体脱细胞真皮基质治疗糖尿病足溃疡临床效果荟萃分析[J].中华烧伤杂志,2016,32(12):725-729.DOI: 10.3760/cma.j.issn.1009-2587.2016.12.005.
    [23] GuestJF,WeidlichD, SinghH, et al. Cost-effectiveness of using adjunctive porcine small intestine submucosa tri-layer matrix compared with standard care in managing diabetic foot ulcers in the US[J]. J Wound Care, 2017, 26(Suppl 1): S12-24. DOI: 10.12968/jowc.2017.26.Sup1.S12.
    [24] FrykbergRG,CazzellSM,Arroyo-RiveraJ, et al.Evaluation of tissue engineering products for the management of neuropathic diabetic foot ulcers: an interim analysis[J].J Wound Care,2016,25 Suppl 7:S18-25.DOI: 10.12968/jowc.2016.25.7.S18.
    [25] AlvarezOM,SmithT, GilbertTW, et al. Diabetic foot ulcers treated with porcine urinary bladder extracellular matrix and total contact cast: interim analysis of a randomized, controlled trial[J]. Wounds, 2017, 29(5): 140-146.
    [26] TurnerNJ, BadylakSF. The use of biologic scaffolds in the treatment of chronic nonhealing wounds[J]. Adv Wound Care (New Rochelle), 2015, 4(8): 490-500. DOI: 10.1089/wound.2014.0604.
    [27] LantisJC,SnyderR,ReyzelmanAM, et al.Fetal bovine acellular dermal matrix for the closure of diabetic foot ulcers: a prospective randomised controlled trial[J].J Wound Care,2021,30(Suppl 7):S18-27.DOI: 10.12968/jowc.2021.30.Sup7.S18.
    [28] KarrJC. Retrospective comparison of diabetic foot ulcer and venous stasis ulcer healing outcome between a dermal repair scaffold (PriMatrix) and a bilayered living cell therapy (Apligraf)[J]. Adv Skin Wound Care, 2011, 24(3): 119-125. DOI: 10.1097/01.ASW.0000395038.28398.88.
    [29] YangHY,FierroF, SoM, et al. Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice[J]. Stem Cells Transl Med, 2020, 9(11): 1353-1364. DOI: 10.1002/sctm.19-0380.
    [30] LiuH,LiuHP, DengXY, et al. CXCR4 antagonist delivery on decellularized skin scaffold facilitates impaired wound healing in diabetic mice by increasing expression of SDF-1 and enhancing migration of CXCR4-positive cells[J]. Wound Repair Regen, 2017, 25(4): 652-664. DOI: 10.1111/wrr.12552.
    [31] KaymakcalanOE,AbadeerA,GoldufskyJW, et al.Topical α-gal nanoparticles accelerate diabetic wound healing[J].Exp Dermatol,2020,29(4):404-413.DOI: 10.1111/exd.14084.
    [32] WuYY,JiaoYP, XiaoLL, et al. Experimental study on effects of adipose-derived stem cell-seeded silk fibroin chitosan film on wound healing of a diabetic rat model[J]. Ann Plast Surg, 2018, 80(5): 572-580. DOI: 10.1097/SAP.0000000000001355.
    [33] MaZX,Garrido-MaestuA, JeongKC. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: a review[J]. Carbohydr Polym, 2017, 176: 257-265. DOI: 10.1016/j.carbpol.2017.08.082.
    [34] AhmedR,TariqM, AliI, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing[J]. Int J Biol Macromol, 2018, 120 (Pt A): 385-393. DOI: 10.1016/j.ijbiomac.2018.08.057.
    [35] YiS,XuL, GuXS. Scaffolds for peripheral nerve repair and reconstruction[J]. Exp Neurol, 2019, 319: 112761. DOI: 10.1016/j.expneurol.2018.05.016.
    [36] IlhanE,CesurS,GulerE, et al.Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material[J].Int J Biol Macromol,2020,161:1040-1054.DOI: 10.1016/j.ijbiomac.2020.06.086.
    [37] WangT,ZhengY,ShiYJ, et al.pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity[J].Drug Deliv Transl Res,2019,9(1):227-239.DOI: 10.1007/s13346-018-00609-8.
    [38] TellecheaA,SilvaEA, MinJH, et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing[J]. Int J Low Extrem Wounds, 2015, 14(2): 146-153. DOI: 10.1177/1534734615580018.
    [39] WawrzyńskaE,KubiesD.Alginate matrices for protein delivery - a short review[J].Physiol Res,2018,67(Suppl 2):S319-334.DOI: 10.33549/physiolres.933980.
    [40] GuF,AmsdenB, NeufeldR. Sustained delivery of vascular endothelial growth factor with alginate beads[J]. J Control Release, 2004, 96(3): 463-472. DOI: 10.1016/j.jconrel.2004.02.021.
    [41] KimJE,LeeJH, KimSH, et al. Skin regeneration with self-assembled peptide hydrogels conjugated with substance P in a diabetic rat model[J]. Tissue Eng Part A, 2018, 24(1/2): 21-33. DOI: 10.1089/ten.TEA.2016.0517.
    [42] KoutsopoulosS.Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications[J].J Biomed Mater Res A,2016,104(4):1002-1016.DOI: 10.1002/jbm.a.35638.
    [43] CarrejoNC,MooreAN, Lopez SilvaTL, et al. Multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice[J]. ACS Biomater Sci Eng, 2018, 4(4): 1386-1396. DOI: 10.1021/acsbiomaterials.8b00031.
    [44] HiewVV,SimatSFB, TeohPL. The advancement of biomaterials in regulating stem cell fate[J]. Stem Cell Rev Rep, 2018, 14(1): 43-57. DOI: 10.1007/s12015-017-9764-y.
    [45] ChereddyKK,VandermeulenG,PréatV.PLGA based drug delivery systems: promising carriers for wound healing activity[J].Wound Repair Regen,2016,24(2):223-236.DOI: 10.1111/wrr.12404.
    [46] Mohiti-AsliM,SahaS, MurphySV, et al. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(2): 327-339. DOI: 10.1002/jbm.b.33520.
    [47] CuiS,SunX, LiK, et al. Polylactide nanofibers delivering doxycycline for chronic wound treatment[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109745. DOI: 10.1016/j.msec.2019.109745.
    [48] PorporatoPE,PayenVL, De SaedeleerCJ, et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice[J]. Angiogenesis, 2012, 15(4): 581-592. DOI: 10.1007/s10456-012-9282-0.
    [49] YuMY,HuangJH, ZhuTH, et al. Liraglutide-loaded PLGA/gelatin electrospun nanofibrous mats promote angiogenesis to accelerate diabetic wound healing via the modulation of miR-29b-3p[J]. Biomater Sci, 2020, 8(15): 4225-4238. DOI: 10.1039/d0bm00442a.
    [50] ZhengZF,LiuYS,HuangWH, et al.Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing[J].Artif Cells Nanomed Biotechnol,2018,46(Suppl 2):S493-501.DOI: 10.1080/21691401.2018.1460372.
    [51] AgnolLD,Gonzalez DiasFT,NicolettiNF, et al.Polyurethane as a strategy for annulus fibrosus repair and regeneration: a systematic review[J].Regen Med,2018,13(5):611-626.DOI: 10.2217/rme-2018-0003.
    [52] van LithR,GregoryEK, YangJ, et al. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues[J]. Biomaterials, 2014, 35(28): 8113-8122. DOI: 10.1016/j.biomaterials.2014.06.004.
    [53] XiaoJS,ChenSY, YiJ, et al. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes[J]. Adv Funct Mater, 2017, 27(1): 1604872. DOI: 10.1002/adfm.201604872.
    [54] JinX,ShangYY, ZouYY, et al. Injectable hypoxia-induced conductive hydrogel to promote diabetic wound healing[J]. ACS Appl Mater Interfaces, 2020, 12(51): 56681-56691. DOI: 10.1021/acsami.0c13197.
  • 加载中
计量
  • 文章访问数:  295
  • HTML全文浏览量:  87
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-19

目录

    /

    返回文章
    返回