-
摘要: 深度烧伤患者极易出现瘢痕增生或挛缩,导致肢体功能障碍等问题,严重影响患者生活质量,使其难以回归社会,因此深度烧伤后的康复治疗尤为重要。目前运动疗法在烧伤康复中发挥重要作用,但多以人工持续辅助训练、手法牵伸活动等给予患者肢体活动锻炼,纠正患者肢体功能障碍。随着科技的不断进步,功能训练机器人应运而生。功能训练机器人的出现节约了人力,提供给患者精细、标准化的功能锻炼治疗。该文主要从制作技术与多技术整合方面对目前功能训练机器人的革新发展以及功能训练机器人在烧伤康复领域应用的优势进行介绍。Abstract: Patients with deep burns are prone to suffer cicatrix hyperplasia or contracture, leading to problems including dysfunction in limbs, which impacts patients' life quality and makes it difficult for them to return to society. Thereby, the rehabilitation treatment after deep burns is particularly important. Currently, exercise therapy plays an important role in burn rehabilitation, which is mainly based on therapies such as continuous manual assistance training and manual stretching practice to provide patients with physical exercise to limbs and to correct the functional dysfunction of limbs in patients. With the continuous progress in technology, functional training robots have been developed to meet the needs. The emergence of functional training robots saves manpower and provides patients refined and standardized functional exercise treatment. From the aspects of production technology and multi-technology integration, this paper mainly introduces the recent innovation and development of functional training robots and the advantages of the application of functional training robots in the field of burn rehabilitation.
-
Key words:
- Burns /
- Rehabilitation /
- Functional training robots /
- Functional training
-
参考文献
(35) [1] TanJ , ChenJ , ZhouJ , et al. Joint contractures in severe burn patients with early rehabilitation intervention in one of the largest burn intensive care unit in China: a descriptive analysis[J/OL].Burns Trauma, 2019,7:1-10[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/31139664/. DOI: 10.1186/s41038-019-0151-6. [2] 励建安. 人机共融,天人合一——关于康复机器人应用与发展的思考[J]. 中国康复医学杂志,2020, 35(8): 897-899. DOI: 10.3969/j.issn.1001-1242.2020.08.001. [3] SchieffelersDR,van BredaE,GebruersN,et al.Status of adult inpatient burn rehabilitation in Europe: are we neglecting metabolic outcomes?[J/OL].Burns Trauma,2021,9:tkaa039 [2022-05-19].https://pubmed.ncbi.nlm.nih.gov/33709001/.DOI: 10.1093/burnst/tkaa039. [4] ShahidT,GouwandaD,NurzamanSG,et al.Moving toward soft robotics: a decade review of the design of hand exoskeletons[J].Biomimetics (Basel),2018,3(3):17.DOI: 10.3390/biomimetics3030017. [5] Haghshenas-JaryaniM,PattersonRM,BugnariuN,et al.A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation[J].J Hand Ther,2020,33(2):198-208.DOI: 10.1016/j.jht.2020.03.024. [6] ShiotaK, KokubuS, TarvainenTVJ, et al. Enhanced Kapandji test evaluation of a soft robotic thumb rehabilitation device by developing a fiber-reinforced elastomer-actuator based 5-digit assist system[J]. Robotics and Autonomous Systems, 2019, 111:20-30. DOI: 10.1016/j.robot.2018.09.007. [7] RoseCG, O'MalleyMK. Hybrid rigid-soft hand exoskeleton to assist functional dexterity[J]. IEEE Robotics and Automation Letters, 2019, 4(1):73-80. DOI: 10.1109/LRA.2018.2878931. [8] SuzumoriK,FaudziAA. Trends in hydraulic actuators and components in legged and tough robots: a review[J]. Advanced Robotics, 2018,32(9):1-19. DOI: 10.1080/01691864.2018.1455606. [9] MaX,YuanR, FangS. The system study of pneumatic exoskeleton rehabilitation manipulator[J]. J Eng, 2019, 2019(13):181-185.DOI: 10.1049/joe.2018.9005. [10] HoTY, ChenYJ, ChenPH. The design and implementation of a motor drive for foot rehabilitation[J]. Computers & Electrical Engineering, 2016,56:795-806. DOI: 10.1016/j.compeleceng.2016.07.017. [11] KalitaB,DwivedySK. Nonlinear dynamics of a parametrically excited pneumatic artificial muscle (PAM) actuator with simultaneous resonance condition[J]. Mechanism and Machine Theory, 2019, 135:281-297. DOI: 10.1016/j.mechmachtheory.2019.01.031. [12] DasS,KishishitaY, TsujiT, et al. Forcehand glove: a wearable force-feedback glove with pneumatic artificial muscles (PAMs)[J]. IEEE Robotics & Automation Letters, 2018, 3(3):2416-2423. DOI: 10.1109/LRA.2018.2813403. [13] GaoF, LiuYN, LiaoWH. Optimal design of a magnetorheological damper used in smart prosthetic knees[J]. Smart Materials and Structures, 2017, 26(3):035034.DOI: 10.1088/1361-665X/aa5494. [14] LiuQ, ZuoJ, ZhuC, et al. Design and control of soft rehabilitation robots actuated by pneumatic muscles: state of the art[J]. Future Generation Computer Systems, 2020, 113:620-634. DOI: 10.1016/j.future.2020.06.046. [15] ProiettiT,CrocherV,Roby-BramiA,et al.Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies[J].IEEE Rev Biomed Eng,2016,9:4-14.DOI: 10.1109/RBME.2016.2552201. [16] WashabaughEP,TreadwayE,GillespieRB,et al.Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study[J].Restor Neurol Neurosci,2018,36(6):693-708.DOI: 10.3233/RNN-180830. [17] GrosuV,GrosuS,VanderborghtB,et al.Multi-axis force sensor for human-robot interaction sensing in a rehabilitation robotic device[J].Sensors (Basel),2017,17(6):1294.DOI: 10.3390/s17061294. [18] MancisidorA,ZubizarretaA,CabanesI,et al.Virtual sensors for advanced controllers in rehabilitation robotics[J].Sensors (Basel),2018,18(3) :785. DOI: 10.3390/s18030785. [19] ScapinS,Echevarría-GuaniloME,Boeira Fuculo JuniorPR,et al.Virtual reality in the treatment of burn patients: a systematic review[J].Burns,2018,44(6):1403-1416.DOI: 10.1016/j.burns.2017.11.002. [20] EmmelkampP,MeyerbrökerK,MorinaN.Virtual reality therapy in social anxiety disorder[J].Curr Psychiatry Rep,2020,22(7):32.DOI: 10.1007/s11920-020-01156-1. [21] SchieffelersDR, van BredaE, GebruersN, et al. Data from Campus Bio-Medico University update knowledge in telerehabilitation (virtual reality, augmented reality, gamification, and telerehabilitation: psychological impact on orthopedic patients' rehabilitation[J/OL].Burns Trauma, 2021,9:tkaa039[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/33709001/. DOI: 10.1093/burnst/tkaa039. [22] LuoH,CaoC,ZhongJ,et al.Adjunctive virtual reality for procedural pain management of burn patients during dressing change or physical therapy: a systematic review and meta-analysis of randomized controlled trials[J].Wound Repair Regen,2019,27(1):90-101.DOI: 10.1111/wrr.1. [23] WielandLS.Psychological interventions for needle-related procedural pain and distress in children and adolescents: summary of a cochrane review[J].Explore (NY),2019,15(1):74-75.DOI: 10.1016/j.explore.2018.10.014. [24] GarrettBM,TaoG,TavernerT,et al.Patients perceptions of virtual reality therapy in the management of chronic cancer pain[J].Heliyon,2020,6(5):e03916.DOI: 10.1016/j.heliyon.2020.e03916. [25] LindnerP,DagööJ,HamiltonW,et al.Virtual reality exposure therapy for public speaking anxiety in routine care: a single-subject effectiveness trial[J].Cogn Behav Ther,2021,50(1):67-87.DOI: 10.1080/16506073.2020.1795240. [26] KhadraC,BallardA,PaquinD,et al.Effects of a projector-based hybrid virtual reality on pain in young children with burn injuries during hydrotherapy sessions: a within-subject randomized crossover trial[J].Burns,2020,46(7):1571-1584.DOI: 10.1016/j.burns.2020.04.006. [27] RoseT,NamCS,ChenKB.Immersion of virtual reality for rehabilitation - review[J].Appl Ergon,2018,69:153-161.DOI: 10.1016/j.apergo.2018.01.009. [28] ParryI,CarbullidoC,KawadaJ,et al.Keeping up with video game technology: objective analysis of Xbox Kinect™ and PlayStation 3 Move™ for use in burn rehabilitation[J].Burns,2014,40(5):852- 859.DOI: 10.1016/j.burns.2013.11.005. [29] SamhanAF,AbdelhalimNM,ElnaggarRK.Effects of interactive robot-enhanced hand rehabilitation in treatment of paediatric hand-burns: a randomized, controlled trial with 3-months follow-up[J].Burns,2020,46(6):1347-1355.DOI: 10.1016/j.burns.2020.01.015. [30] PriceK,MoiemenN,NiceL,et al.Patient experience of scar assessment and the use of scar assessment tools during burns rehabilitation: a qualitative study[J/OL].Burns Trauma,2021,9:tkab005[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/34212058/. DOI: 10.1093/burnst/tkab005. [31] SmithN, HotzeR, TateAR. A novel rehabilitation program using neuromuscular electrical stimulation (NMES) and taping for shoulder pain in swimmers: a protocol and case example[J]. Int J Sports Phys Ther, 2021,16(2):579-590. DOI: 10.26603/001c.21234. [32] RongW,LiW,PangM,et al.A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke[J].J Neuroeng Rehabil,2017,14(1):34.DOI: 10.1186/s12984-017-0245-y. [33] SalazarAP,PagnussatAS,PereiraGA,et al.Neuromuscular electrical stimulation to improve gross motor function in children with cerebral palsy: a meta-analysis[J].Braz J Phys Ther,2019,23(5):378-386.DOI: 10.1016/j.bjpt.2019.01.006. [34] HuangY, NamC, LiW, et al. A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: a randomized controlled trial[J]. Biomedical Signal Processing and Control,2020, 56: 101723. DOI: 10.1016/j.bspc.2019.101723. [35] 龙艺,贾赤宇.现代烧伤康复应用技术进展[J].中华烧伤杂志,2012,28(5):370-373.DOI: 10.3760/cma.j.issn.1009-2587.2012.05.015. -
《中华烧伤与创面修复杂志》第六届编辑委员会编辑委员名单
终身顾问 盛志勇 程天民 王正国 樊代明 付小兵 夏照帆 卞修武 顾晓松 李校堃 顾 问 肖光夏 杨宗城 汪仕良 孙永华 柴家科 黄跃生 岑瑛 王旭 名誉总编辑 彭毅志 总编辑 罗高兴 以下按姓氏拼音排序 副总编辑 郭光华 韩春茂 胡大海 郇京宁 梁光萍 刘毅 吕国忠 吴军 谢卫国 姚咏明 常务编辑委员 官浩 贺伟峰 李孝建 李宗瑜 刘琰 陆树良 马显杰 申传安 沈余明 孙炳伟 谭 谦 王达利 王一兵 夏成德 肖仕初 徐庆连 于家傲 袁志强 张丕红 张庆富 张逸 章一新 编辑委员 巴特 陈国贤 陈炯 陈俊杰 陈欣 陈旭 陈旭林 陈昭宏 程飚 崔正军 邓 君 范锟铻 方勇 冯世海 冯正直 官浩 郭光华 韩春茂 韩军涛 郝岱峰 贺伟峰 胡大海 郇京宁 黄沙 霍然 姜笃银 金培生 赖文 雷晋 李德绘 李小兵 李晓亮 李孝建 李学拥 李 毅 李智 李宗瑜 梁光萍 刘文军 刘小龙 刘旭盛 刘琰 刘毅 陆树良 罗高兴 吕大伦 吕国忠 马朋林 马显杰 潘云川 彭曦 齐鸿燕 邱林 荣新洲 申传安 沈余明 沈运彪 史春梦 宋保强 宋国栋 宋华培 孙炳伟 孙天骏 谭谦 唐洪泰 陶克 童亚林 王达利 王德运 王光毅 王凌峰 王新刚 王杨 王一兵 魏在荣 吴健 吴军 吴银生 夏成德 肖厚安 肖健 肖仕初 谢挺 谢卫国 徐庆连 颜洪 杨磊 姚咏明 于家傲 袁志强 曾元临 詹剑华 张恒术 张家平 张建祥 张明华 张丕红 张 勤 张庆富 张逸 章一新 赵耀华 赵永健 朱世辉 以下按英文首字母排序 Chong Si Jack(新加坡) David N. Herndon(美国) Fiona Wood(澳大利亚) Malcolm Xing(邢孟秋,加拿大) Naiem S. Moiemen(英国) Ronald G. Tompkins(美国) Steven E. Wolf(美国) Tina L. Palmieri(美国) Yong-Ming Yu(尤永明,美国)
表(1)
计量
- 文章访问数: 262
- HTML全文浏览量: 109
- PDF下载量: 34
- 被引次数: 0