留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧伤康复中功能训练机器人的研究进展

田亚菲 刘毅

田亚菲, 刘毅. 烧伤康复中功能训练机器人的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(6): 580-584. DOI: 10.3760/cma.j.cn501120-20210416-00131.
引用本文: 田亚菲, 刘毅. 烧伤康复中功能训练机器人的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(6): 580-584. DOI: 10.3760/cma.j.cn501120-20210416-00131.
Tian YF,Liu Y.Research advances on functional training robots in burn rehabilitation[J].Chin J Burns Wounds,2022,38(6):580-584.DOI: 10.3760/cma.j.cn501120-20210416-00131.
Citation: Tian YF,Liu Y.Research advances on functional training robots in burn rehabilitation[J].Chin J Burns Wounds,2022,38(6):580-584.DOI: 10.3760/cma.j.cn501120-20210416-00131.

烧伤康复中功能训练机器人的研究进展

doi: 10.3760/cma.j.cn501120-20210416-00131
基金项目: 

国家自然科学基金重点项目 BWS11CD61

详细信息
    通讯作者:

    刘毅,Email:liuyi196402@163.com

Research advances on functional training robots in burn rehabilitation

Funds: 

Key Program of National Natural Science Foundation of China BWS11CD61

More Information
  • 摘要: 深度烧伤患者极易出现瘢痕增生或挛缩,导致肢体功能障碍等问题,严重影响患者生活质量,使其难以回归社会,因此深度烧伤后的康复治疗尤为重要。目前运动疗法在烧伤康复中发挥重要作用,但多以人工持续辅助训练、手法牵伸活动等给予患者肢体活动锻炼,纠正患者肢体功能障碍。随着科技的不断进步,功能训练机器人应运而生。功能训练机器人的出现节约了人力,提供给患者精细、标准化的功能锻炼治疗。该文主要从制作技术与多技术整合方面对目前功能训练机器人的革新发展以及功能训练机器人在烧伤康复领域应用的优势进行介绍。

     

  • 参考文献(35)

    [1] TanJ , ChenJ , ZhouJ , et al. Joint contractures in severe burn patients with early rehabilitation intervention in one of the largest burn intensive care unit in China: a descriptive analysis[J/OL].Burns Trauma, 2019,7:1-10[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/31139664/. DOI: 10.1186/s41038-019-0151-6.
    [2] 励建安. 人机共融,天人合一——关于康复机器人应用与发展的思考[J]. 中国康复医学杂志,2020, 35(8): 897-899. DOI: 10.3969/j.issn.1001-1242.2020.08.001.
    [3] SchieffelersDR,van BredaE,GebruersN,et al.Status of adult inpatient burn rehabilitation in Europe: are we neglecting metabolic outcomes?[J/OL].Burns Trauma,2021,9:tkaa039 [2022-05-19].https://pubmed.ncbi.nlm.nih.gov/33709001/.DOI: 10.1093/burnst/tkaa039.
    [4] ShahidT,GouwandaD,NurzamanSG,et al.Moving toward soft robotics: a decade review of the design of hand exoskeletons[J].Biomimetics (Basel),2018,3(3):17.DOI: 10.3390/biomimetics3030017.
    [5] Haghshenas-JaryaniM,PattersonRM,BugnariuN,et al.A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation[J].J Hand Ther,2020,33(2):198-208.DOI: 10.1016/j.jht.2020.03.024.
    [6] ShiotaK, KokubuS, TarvainenTVJ, et al. Enhanced Kapandji test evaluation of a soft robotic thumb rehabilitation device by developing a fiber-reinforced elastomer-actuator based 5-digit assist system[J]. Robotics and Autonomous Systems, 2019, 111:20-30. DOI: 10.1016/j.robot.2018.09.007.
    [7] RoseCG, O'MalleyMK. Hybrid rigid-soft hand exoskeleton to assist functional dexterity[J]. IEEE Robotics and Automation Letters, 2019, 4(1):73-80. DOI: 10.1109/LRA.2018.2878931.
    [8] SuzumoriK,FaudziAA. Trends in hydraulic actuators and components in legged and tough robots: a review[J]. Advanced Robotics, 2018,32(9):1-19. DOI: 10.1080/01691864.2018.1455606.
    [9] MaX,YuanR, FangS. The system study of pneumatic exoskeleton rehabilitation manipulator[J]. J Eng, 2019, 2019(13):181-185.DOI: 10.1049/joe.2018.9005.
    [10] HoTY, ChenYJ, ChenPH. The design and implementation of a motor drive for foot rehabilitation[J]. Computers & Electrical Engineering, 2016,56:795-806. DOI: 10.1016/j.compeleceng.2016.07.017.
    [11] KalitaB,DwivedySK. Nonlinear dynamics of a parametrically excited pneumatic artificial muscle (PAM) actuator with simultaneous resonance condition[J]. Mechanism and Machine Theory, 2019, 135:281-297. DOI: 10.1016/j.mechmachtheory.2019.01.031.
    [12] DasS,KishishitaY, TsujiT, et al. Forcehand glove: a wearable force-feedback glove with pneumatic artificial muscles (PAMs)[J]. IEEE Robotics & Automation Letters, 2018, 3(3):2416-2423. DOI: 10.1109/LRA.2018.2813403.
    [13] GaoF, LiuYN, LiaoWH. Optimal design of a magnetorheological damper used in smart prosthetic knees[J]. Smart Materials and Structures, 2017, 26(3):035034.DOI: 10.1088/1361-665X/aa5494.
    [14] LiuQ, ZuoJ, ZhuC, et al. Design and control of soft rehabilitation robots actuated by pneumatic muscles: state of the art[J]. Future Generation Computer Systems, 2020, 113:620-634. DOI: 10.1016/j.future.2020.06.046.
    [15] ProiettiT,CrocherV,Roby-BramiA,et al.Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies[J].IEEE Rev Biomed Eng,2016,9:4-14.DOI: 10.1109/RBME.2016.2552201.
    [16] WashabaughEP,TreadwayE,GillespieRB,et al.Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study[J].Restor Neurol Neurosci,2018,36(6):693-708.DOI: 10.3233/RNN-180830.
    [17] GrosuV,GrosuS,VanderborghtB,et al.Multi-axis force sensor for human-robot interaction sensing in a rehabilitation robotic device[J].Sensors (Basel),2017,17(6):1294.DOI: 10.3390/s17061294.
    [18] MancisidorA,ZubizarretaA,CabanesI,et al.Virtual sensors for advanced controllers in rehabilitation robotics[J].Sensors (Basel),2018,18(3) :785. DOI: 10.3390/s18030785.
    [19] ScapinS,Echevarría-GuaniloME,Boeira Fuculo JuniorPR,et al.Virtual reality in the treatment of burn patients: a systematic review[J].Burns,2018,44(6):1403-1416.DOI: 10.1016/j.burns.2017.11.002.
    [20] EmmelkampP,MeyerbrökerK,MorinaN.Virtual reality therapy in social anxiety disorder[J].Curr Psychiatry Rep,2020,22(7):32.DOI: 10.1007/s11920-020-01156-1.
    [21] SchieffelersDR, van BredaE, GebruersN, et al. Data from Campus Bio-Medico University update knowledge in telerehabilitation (virtual reality, augmented reality, gamification, and telerehabilitation: psychological impact on orthopedic patients' rehabilitation[J/OL].Burns Trauma, 2021,9:tkaa039[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/33709001/. DOI: 10.1093/burnst/tkaa039.
    [22] LuoH,CaoC,ZhongJ,et al.Adjunctive virtual reality for procedural pain management of burn patients during dressing change or physical therapy: a systematic review and meta-analysis of randomized controlled trials[J].Wound Repair Regen,2019,27(1):90-101.DOI: 10.1111/wrr.1.
    [23] WielandLS.Psychological interventions for needle-related procedural pain and distress in children and adolescents: summary of a cochrane review[J].Explore (NY),2019,15(1):74-75.DOI: 10.1016/j.explore.2018.10.014.
    [24] GarrettBM,TaoG,TavernerT,et al.Patients perceptions of virtual reality therapy in the management of chronic cancer pain[J].Heliyon,2020,6(5):e03916.DOI: 10.1016/j.heliyon.2020.e03916.
    [25] LindnerP,DagööJ,HamiltonW,et al.Virtual reality exposure therapy for public speaking anxiety in routine care: a single-subject effectiveness trial[J].Cogn Behav Ther,2021,50(1):67-87.DOI: 10.1080/16506073.2020.1795240.
    [26] KhadraC,BallardA,PaquinD,et al.Effects of a projector-based hybrid virtual reality on pain in young children with burn injuries during hydrotherapy sessions: a within-subject randomized crossover trial[J].Burns,2020,46(7):1571-1584.DOI: 10.1016/j.burns.2020.04.006.
    [27] RoseT,NamCS,ChenKB.Immersion of virtual reality for rehabilitation - review[J].Appl Ergon,2018,69:153-161.DOI: 10.1016/j.apergo.2018.01.009.
    [28] ParryI,CarbullidoC,KawadaJ,et al.Keeping up with video game technology: objective analysis of Xbox Kinect™ and PlayStation 3 Move™ for use in burn rehabilitation[J].Burns,2014,40(5):852- 859.DOI: 10.1016/j.burns.2013.11.005.
    [29] SamhanAF,AbdelhalimNM,ElnaggarRK.Effects of interactive robot-enhanced hand rehabilitation in treatment of paediatric hand-burns: a randomized, controlled trial with 3-months follow-up[J].Burns,2020,46(6):1347-1355.DOI: 10.1016/j.burns.2020.01.015.
    [30] PriceK,MoiemenN,NiceL,et al.Patient experience of scar assessment and the use of scar assessment tools during burns rehabilitation: a qualitative study[J/OL].Burns Trauma,2021,9:tkab005[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/34212058/. DOI: 10.1093/burnst/tkab005.
    [31] SmithN, HotzeR, TateAR. A novel rehabilitation program using neuromuscular electrical stimulation (NMES) and taping for shoulder pain in swimmers: a protocol and case example[J]. Int J Sports Phys Ther, 2021,16(2):579-590. DOI: 10.26603/001c.21234.
    [32] RongW,LiW,PangM,et al.A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke[J].J Neuroeng Rehabil,2017,14(1):34.DOI: 10.1186/s12984-017-0245-y.
    [33] SalazarAP,PagnussatAS,PereiraGA,et al.Neuromuscular electrical stimulation to improve gross motor function in children with cerebral palsy: a meta-analysis[J].Braz J Phys Ther,2019,23(5):378-386.DOI: 10.1016/j.bjpt.2019.01.006.
    [34] HuangY, NamC, LiW, et al. A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: a randomized controlled trial[J]. Biomedical Signal Processing and Control,2020, 56: 101723. DOI: 10.1016/j.bspc.2019.101723.
    [35] 龙艺,贾赤宇.现代烧伤康复应用技术进展[J].中华烧伤杂志,2012,28(5):370-373.DOI: 10.3760/cma.j.issn.1009-2587.2012.05.015.
  •   《中华烧伤与创面修复杂志》第六届编辑委员会编辑委员名单

    终身顾问盛志勇程天民王正国樊代明付小兵夏照帆卞修武顾晓松李校堃
    顾 问肖光夏杨宗城汪仕良孙永华柴家科黄跃生岑瑛王旭
    名誉总编辑彭毅志
    总编辑罗高兴
    以下按姓氏拼音排序
    副总编辑郭光华韩春茂胡大海郇京宁梁光萍刘毅吕国忠吴军谢卫国
    姚咏明
    常务编辑委员官浩贺伟峰李孝建李宗瑜刘琰陆树良马显杰申传安沈余明
    孙炳伟谭 谦王达利王一兵夏成德肖仕初徐庆连于家傲袁志强
    张丕红张庆富张逸章一新
    编辑委员巴特陈国贤陈炯陈俊杰陈欣陈旭陈旭林陈昭宏程飚
    崔正军邓 君范锟铻方勇冯世海冯正直官浩郭光华韩春茂
    韩军涛郝岱峰贺伟峰胡大海郇京宁黄沙霍然姜笃银金培生
    赖文雷晋李德绘李小兵李晓亮李孝建李学拥李 毅李智
    李宗瑜梁光萍刘文军刘小龙刘旭盛刘琰刘毅陆树良罗高兴
    吕大伦吕国忠马朋林马显杰潘云川彭曦齐鸿燕邱林荣新洲
    申传安沈余明沈运彪史春梦宋保强宋国栋宋华培孙炳伟孙天骏
    谭谦唐洪泰陶克童亚林王达利王德运王光毅王凌峰王新刚
    王杨王一兵魏在荣吴健吴军吴银生夏成德肖厚安肖健
    肖仕初谢挺谢卫国徐庆连颜洪杨磊姚咏明于家傲袁志强
    曾元临詹剑华张恒术张家平张建祥张明华张丕红张 勤张庆富
    张逸章一新赵耀华赵永健朱世辉
    以下按英文首字母排序
    Chong Si Jack(新加坡) David N. Herndon(美国) Fiona Wood(澳大利亚)
    Malcolm Xing(邢孟秋,加拿大) Naiem S. Moiemen(英国) Ronald G. Tompkins(美国)
    Steven E. Wolf(美国) Tina L. Palmieri(美国) Yong-Ming Yu(尤永明,美国)
    下载: 导出CSV
  • 加载中
表(1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  109
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16

目录

    /

    返回文章
    返回