留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瘢痕疙瘩中的成纤维细胞特性研究进展

王蕴璋 苏晨 付思祺 刘立强

王蕴璋, 苏晨, 付思祺, 等. 瘢痕疙瘩中的成纤维细胞特性研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(6): 590-594. DOI: 10.3760/cma.j.cn501120-20210510-00176.
引用本文: 王蕴璋, 苏晨, 付思祺, 等. 瘢痕疙瘩中的成纤维细胞特性研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(6): 590-594. DOI: 10.3760/cma.j.cn501120-20210510-00176.
Wang YZ,Su C,Fu SQ,et al.Research advances on the characteristics of fibroblast in keloid[J].Chin J Burns Wounds,2022,38(6):590-594.DOI: 10.3760/cma.j.cn501120-20210510-00176.
Citation: Wang YZ,Su C,Fu SQ,et al.Research advances on the characteristics of fibroblast in keloid[J].Chin J Burns Wounds,2022,38(6):590-594.DOI: 10.3760/cma.j.cn501120-20210510-00176.

瘢痕疙瘩中的成纤维细胞特性研究进展

doi: 10.3760/cma.j.cn501120-20210510-00176
详细信息
    通讯作者:

    刘立强,Email:liuliqiang@psh.pumc.edu.cn

Research advances on the characteristics of fibroblast in keloid

More Information
  • 摘要: 近20年来,细胞生物学技术的发展推动了瘢痕疙瘩的相关研究。瘢痕疙瘩成纤维细胞(KFb)是瘢痕疙瘩中的主要效应细胞,与瘢痕疙瘩的发生发展密切相关。KFb在生物学特性、基因表达等方面与正常成纤维细胞有明显差异。该文从多个角度对KFb的特性进行了综述,详细描述了其生物学特性如显微结构、代谢特点、增殖性质等情况,并介绍了KFb的异质性与基因组学等方面的主要特征。对KFb研究的不断深入将有助于阐明瘢痕疙瘩的发病机制并为瘢痕疙瘩的防治提供宝贵策略。

     

  • 表1  13篇文献的瘢痕疙瘩成纤维细胞微阵列芯片研究结果

    第1作者年份类别微阵列芯片分析
    Hsu52018基因345种基因↑,86种基因↓
    Inui382011基因374种基因↑,758种基因↓
    Wong392014基因250种基因差异表达
    Satish402006基因43种基因↑,5种基因↓
    Seifert312008基因97种基因↑,26种基因↓
    Hahn412013基因12种基因↑,13种基因↓
    Li422016基因196种基因↑,462种基因↓
    郭晓瑞432011miR1种miR↑,11种miR↓
    Wu352014miR3种miR↑,14种miR↓
    Wu442019miR63种miR↑,76种miR↓
    Yan452020miR14种miR↑,15种miR↓
    Liang462015lncRNA1 731种lncRNA↑,782种lncRNA↓
    Guo472016lncRNA1 290种lncRNA↑,778种lncRNA↓
    注:miR为微小RNA, lncRNA为长链非编码RNA;↑表示上调,↓表示下调
    下载: 导出CSV

      《中华烧伤与创面修复杂志》第六届编辑委员会通讯编委名单按姓氏拼音排序

    贲道锋卞徽宁曹永倩晁生武陈辉陈婧陈朗陈铭锐陈鹏陈晓东
    陈忠勇程君涛迟云飞储国平党永明邓呈亮狄海萍丁国兵丁若虹董茂龙
    段红杰段鹏樊东力房贺冯光付忠华郭毅斌韩兆峰侯春胜胡德林
    胡炯宇胡骁骅胡晓燕黄红军纪世召江华姜丽萍姜玉峰雷娜黎宁
    李东杰李峰李靖李晓东李晓鲁梁钢梁鹏飞林才林国安林源
    刘德伍刘健刘军刘淑华龙奕卢长虹鲁峰吕开阳吕强马思远
    牛轶雯欧阳军乔亮覃凤均邱学文曲滨任超沈江涌石继红宋慧锋
    苏海涛苏永涛孙勇孙瑜谭江琳唐修俊滕苗田社民涂家金汪虹
    汪洋王爱萍王德怀王洪涛王会军王良喜王爽王献珍王志永温冰
    邬佳敏吴红吴继炎吴巍巍吴祖煌向飞向军谢举临谢松涛辛海明
    许喜生许学文薛斌杨建民杨敏烈杨薛康姚明姚兴伟叶祥柏易成刚
    易南于东宁岳丽青翟红军詹日兴张博张东霞张红艳张菊芳张玲娟
    张庆红张彦琦张寅张元海张志赵全赵冉赵雄郑德义郑东风
    郑军周国富周俊峄周琴周万芳朱峰朱宇刚祝筱梅邹立津邹晓防
    下载: 导出CSV
  • [1] OgawaR, AkitaS, AkaishiS, et al. Diagnosis and treatment of keloids and hypertrophic scars-Japan Scar Workshop Consensus Document 2018[J/OL]. Burns Trauma, 2019,7:39[2022-04-15]. https://pubmed.ncbi.nlm.nih.gov/31890718/. DOI: 10.1186/s41038-019-0175-y.
    [2] LuoL, LiJ, LiuH, et al. Adiponectin is involved in connective tissue growth factor-induced proliferation, migration and overproduction of the extracellular matrix in keloid fibroblasts[J]. Int J Mol Sci, 2017, 18(5):1044.DOI: 10.3390/ijms18051044.
    [3] FangF, HuangRL, ZhengY, et al. Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling[J]. J Dermatol Sci, 2016,83(2):95-105. DOI: 10.1016/j.jdermsci.2016.03.003.
    [4] ZhangGY, GaoWY, LiX, et al. Effect of camptothecin on collagen synthesis in fibroblasts from patients with keloid[J]. Ann Plast Surg, 2009,63(1):94-99. DOI: 10.1097/SAP.0b013e3181872775.
    [5] HsuCK, LinHH, HarnHI, et al. Caveolin-1 controls hyperresponsiveness to mechanical stimuli and fibrogenesis- associated RUNX2 activation in keloid fibroblasts[J]. J Invest Dermatol, 2018,138(1):208-218. DOI: 10.1016/j.jid.2017.05.041.
    [6] AshcroftKJ, SyedF, BayatA. Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling[J]. PLoS One, 2013,8(12):e75600. DOI: 10.1371/journal.pone.0075600.
    [7] LimCP, PhanTT, LimIJ, et al. Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts[J]. J Invest Dermatol, 2009,129(4):851-861. DOI: 10.1038/jid.2008.337.
    [8] VincentAS, PhanTT, MukhopadhyayA, et al. Human skin keloid fibroblasts display bioenergetics of cancer cells[J]. J Invest Dermatol, 2008,128(3):702-709. DOI: 10.1038/sj.jid.5701107.
    [9] LiQ, QinZ, NieF, et al. Metabolic reprogramming in keloid fibroblasts: aerobic glycolysis and a novel therapeutic strategy[J]. Biochem Biophys Res Commun, 2018,496(2):641-647. DOI: 10.1016/j.bbrc.2018.01.068.
    [10] 苏治国, 范金财, 刘立强, 等. 瘢痕疙瘩成纤维细胞中Warburg效应的研究[J]. 中华整形外科杂志,2020,36(10):1100-1105. DOI: 10.3760/cma.j.cn114453-20200220-00064.
    [11] 陈斌, 于东宁, 秦泽莲, 等. 瘢痕疙瘩成纤维细胞线粒体功能障碍及其对细胞代谢功能的影响[J].中华整形外科杂志, 2016, 32(5):359-64. DOI: 10.3760/cma.j.issn.1009-4598.2016.05.010.
    [12] XinY, WangX, ZhuM, et al. Expansion of CD26 positive fibroblast population promotes keloid progression[J]. Exp Cell Res, 2017,356(1):104-113. DOI: 10.1016/j.yexcr.2017.04.021.
    [13] LimandjajaGC, NiessenFB, ScheperRJ, et al. The keloid disorder: heterogeneity, histopathology, mechanisms and models[J]. Front Cell Dev Biol, 2020,8:360. DOI: 10.3389/fcell.2020.00360.
    [14] 季江, 吴文雅, 经晶, 等. 瘢痕疙瘩成纤维细胞与正常人皮肤成纤维细胞增殖和胶原产生及相关基因的表达[J]. 中华医学美学美容杂志, 2015, 21(6):361-364. DOI: 10.3760/cma.j.issn.1671-0290.2015.06.013.
    [15] DengCC, ZhuDH, ChenYJ, et al. TRAF4 promotes fibroblast proliferation in keloids by destabilizing p53 via interacting with the deubiquitinase USP10[J]. J Invest Dermatol, 2019,139(9):1925-1935.e5. DOI: 10.1016/j.jid.2019.03.1136.
    [16] YuD, ShangY, YuanJ, et al. Wnt/β-catenin signaling exacerbates keloid cell proliferation by regulating telomerase[J]. Cell Physiol Biochem, 2016,39(5):2001-2013. DOI: 10.1159/000447896.
    [17] HoffmeyerK, RaggioliA, RudloffS, et al. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells[J]. Science, 2012,336(6088):1549-1554. DOI: 10.1126/science.1218370.
    [18] LiY, LiuH, LiangY, et al. DKK3 regulates cell proliferation, apoptosis and collagen synthesis in keloid fibroblasts via TGF-β1/Smad signaling pathway[J]. Biomed Pharmacother, 2017,91:174-180. DOI: 10.1016/j.biopha.2017.03.044.
    [19] 郭洪耀, 乔军波, 林斌, 等. DKK3基因过表达对人瘢痕疙瘩成纤维细胞增殖和凋亡的影响 [J]. 郑州大学学报(医学版), 2019, 54(3): 474-477. DOI: 10.13705/j.issn.1671-6825.2018.09.120.
    [20] 姚晓东MiR-1224-5p通过TGF-β1苏州苏州大学2018

    姚晓东. MiR-1224-5p通过TGF-β1/Smad3通路影响瘢痕疙瘩成纤维细胞增殖、凋亡及侵袭 [D].苏州:苏州大学, 2018.

    [21] WuH, WangJ, MaH, et al. MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid[J]. Oncotarget, 2017,8(54):92914-92925. DOI: 10.18632/oncotarget.21656.
    [22] ZhaoX, JieX, GaoYK, et al. Long non-coding RNA CACNA1G-AS1 promotes proliferation and invasion and inhibits apoptosis by regulating expression of miR-205 in human keloid fibroblasts[J]. Biosci Rep, 2020,40(6):BSR20192839.DOI: 10.1042/BSR20192839.
    [23] WangZ, FengC, SongK, et al. lncRNA-H19/miR-29a axis affected the viability and apoptosis of keloid fibroblasts through acting upon COL1A1 signaling[J]. J Cell Biochem, 2020,121(11):4364-4376. DOI: 10.1002/jcb.29649.
    [24] XuL, SunN, LiG, et al. LncRNA H19 promotes keloid formation through targeting the miR-769-5p/EIF3A pathway[J]. Mol Cell Biochem, 2021,476(3):1477-1487. DOI: 10.1007/s11010-020-04024-x.
    [25] 陆长玺, 郭传瑸. 成釉细胞瘤基质金属蛋白酶-2表达的初步研究[J]. 口腔颌面外科杂志, 2021, 31(1): 28-31. DOI: 10.3969/j.issn.1005-4979.2021.01.005.
    [26] 张鹏, 纪亮, 张翠香,等. 基质金属蛋白酶促进瘢痕疙瘩成纤维细胞迁移及其意义[J]. 中国现代医学杂志, 2013, 23(3): 11-14.
    [27] 徐志山, 回蔷, 李伟, 等. miR-194-3p对瘢痕疙瘩成纤维细胞迁移的作用 [J]. 中华整形外科杂志, 2018, 34(11): 964-970. DOI: 10.3760/cma.j.issn.1009-4598.2018.11.018.
    [28] 田怡肿瘤侵犯相关蛋白AMF对人瘢痕疙瘩成纤维细胞增殖迁移作用的影响及机制研究重庆重庆医科大学2016

    田怡. 肿瘤侵犯相关蛋白AMF对人瘢痕疙瘩成纤维细胞增殖迁移作用的影响及机制研究 [D].重庆:重庆医科大学, 2016.

    [29] desJardins-ParkHE, ChintaMS, FosterDS, et al. Fibroblast heterogeneity in and its implications for plastic and reconstructive surgery: a basic science review[J]. Plast Reconstr Surg Glob Open, 2020,8(6):e2927. DOI: 10.1097/GOX.0000000000002927.
    [30] XinY, MinP, XuH, et al. CD26 upregulates proliferation and invasion in keloid fibroblasts through an IGF-1-induced PI3K/AKT/mTOR pathway[J/OL]. Burns Trauma, 2020,8:tkaa025[2022-03-16]. https://pubmed.ncbi.nlm.nih.gov/33150188/.DOI: 10.1093/burnst/tkaa025.
    [31] SeifertO, BayatA, GeffersR, et al. Identification of unique gene expression patterns within different lesional sites of keloids[J]. Wound Repair Regen, 2008,16(2):254-265. DOI: 10.1111/j.1524-475X.2007.00343.x.
    [32] LuF, GaoJ, OgawaR, et al. Biological differences between fibroblasts derived from peripheral and central areas of keloid tissues[J]. Plast Reconstr Surg, 2007,120(3):625-630. DOI: 10.1097/01.prs.0000270293.93612.7b.
    [33] Tucci-ViegasVM, HochmanB, FrançaJP, et al. Keloid explant culture: a model for keloid fibroblasts isolation and cultivation based on the biological differences of its specific regions[J]. Int Wound J, 2010,7(5):339-348. DOI: 10.1111/j.1742-481X.2010.00698.x.
    [34] SyedF, AhmadiE, IqbalSA, et al. Fibroblasts from the growing margin of keloid scars produce higher levels of collagen I and Ⅲ compared with intralesional and extralesional sites: clinical implications for lesional site-directed therapy[J]. Br J Dermatol, 2011,164(1):83-96. DOI: 10.1111/j.1365-2133.2010.10048.x.
    [35] WuZY, LuL, LiangJ, et al. Keloid microRNA expression analysis and the influence of miR-199a-5p on the proliferation of keloid fibroblasts[J]. Genet Mol Res, 2014,13(2):2727-2738. DOI: 10.4238/2014.April.14.2.
    [36] XuZ, GuoB, ChangP, et al. The differential expression of miRNAs and a preliminary study on the mechanism of miR-194-3p in keloids[J]. Biomed Res Int, 2019,2019:8214923. DOI: 10.1155/2019/8214923.
    [37] ZhangQ, YamazaT, KellyAP, et al. Tumor-like stem cells derived from human keloid are governed by the inflammatory niche driven by IL-17/IL-6 axis[J]. PLoS One, 2009,4(11):e7798. DOI: 10.1371/journal.pone.0007798.
    [38] InuiS, ShonoF, NakajimaT, et al. Identification and characterization of cartilage oligomeric matrix protein as a novel pathogenic factor in keloids[J]. Am J Pathol, 2011,179(4):1951-1960. DOI: 10.1016/j.ajpath.2011.06.034.
    [39] WongVW, YouF, JanuszykM, et al. Transcriptional profiling of rapamycin-treated fibroblasts from hypertrophic and keloid scars[J]. Ann Plast Surg, 2014,72(6):711-719. DOI: 10.1097/SAP.0b013e31826956f6.
    [40] SatishL, Lyons-WeilerJ, HebdaPA, et al. Gene expression patterns in isolated keloid fibroblasts[J]. Wound Repair Regen, 2006,14(4):463-470. DOI: 10.1111/j.1743-6109.2006.00135.x.
    [41] HahnJM, GlaserK, McFarlandKL, et al. Keloid-derived keratinocytes exhibit an abnormal gene expression profile consistent with a distinct causal role in keloid pathology[J]. Wound Repair Regen, 2013,21(4):530-544. DOI: 10.1111/wrr.12060.
    [42] LiM, WuL. Functional analysis of keratinocyte and fibroblast gene expression in skin and keloid scar tissue based on deviation analysis of dynamic capabilities[J]. Exp Ther Med, 2016,12(6):3633-3641. DOI: 10.3892/etm.2016.3817.
    [43] 郭晓瑞MicroRNAs在瘢痕疙瘩中差异表达的研究广州广东医学院2011DOI: 10.7666/d.y2013019

    郭晓瑞. MicroRNAs在瘢痕疙瘩中差异表达的研究[D]. 广州:广东医学院,2011. DOI: 10.7666/d.y2013019.

    [44] WuJ, FangL, CenY, et al. MiR-21 regulates keloid formation by downregulating Smad7 via the TGF-β/Smad signaling pathway[J]. J Burn Care Res, 2019,40(6):809-817. DOI: 10.1093/jbcr/irz089.
    [45] YanL, WangLZ, XiaoR, et al. Inhibition of microRNA-21-5p reduces keloid fibroblast autophagy and migration by targeting PTEN after electron beam irradiation[J]. Lab Invest, 2020,100(3):387-399. DOI: 10.1038/s41374-019-0323-9.
    [46] LiangX, MaL, LongX, et al. LncRNA expression profiles and validation in keloid and normal skin tissue[J]. Int J Oncol, 2015,47(5):1829-1838. DOI: 10.3892/ijo.2015.3177.
    [47] GuoL, XuK, YanH, et al. Expression profile of long noncoding RNAs in human earlobe keloids: a microarray analysis[J]. Biomed Res Int, 2016,2016:5893481. DOI: 10.1155/2016/5893481.
    [48] Ud-DinS, BayatA. Keloid scarring or disease: unresolved quasi-neoplastic tendencies in the human skin[J]. Wound Repair Regen, 2020,28(3):422-426. DOI: 10.1111/wrr.12793.
  • 加载中
表(2)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  56
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10

目录

    /

    返回文章
    返回