留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含人脂肪来源蛋白复合物的三维生物打印墨水的创面修复效应初探

张超 李曌 宋薇 姚斌 恩和吉日嘎拉 张孟德 梁莉婷 姜玉峰 付小兵 黄沙

张超, 李曌, 宋薇, 等. 含人脂肪来源蛋白复合物的三维生物打印墨水的创面修复效应初探[J]. 中华烧伤杂志, 2021, 37(11): 1011-1023. DOI: 10.3760/cma.j.cn501120-20210813-00282.
引用本文: 张超, 李曌, 宋薇, 等. 含人脂肪来源蛋白复合物的三维生物打印墨水的创面修复效应初探[J]. 中华烧伤杂志, 2021, 37(11): 1011-1023. DOI: 10.3760/cma.j.cn501120-20210813-00282.
Zhang C,Li Z,Song W,et al.Preliminary investigation on the wound healing effect of three-dimensional bioprinting ink containing human adipose-derived protein complexes[J].Chin J Burns,2021,37(11):1011-1023.DOI: 10.3760/cma.j.cn501120-20210813-00282.
Citation: Zhang C,Li Z,Song W,et al.Preliminary investigation on the wound healing effect of three-dimensional bioprinting ink containing human adipose-derived protein complexes[J].Chin J Burns,2021,37(11):1011-1023.DOI: 10.3760/cma.j.cn501120-20210813-00282.

含人脂肪来源蛋白复合物的三维生物打印墨水的创面修复效应初探

doi: 10.3760/cma.j.cn501120-20210813-00282
基金项目: 

国家自然科学基金创新研究群体科学基金项目 81721092

国家自然科学基金重点项目 81830064

国家自然科学基金青年科学基金项目 32000969, 82002056

中国医学科学院医学与健康科技创新工程项目 2019-I2M-5-059

解放军总医院军事医学创新研究项目 CX19026

王正国创伤医学发展基金会生长因子复兴计划 SZYZ-TR-03

详细信息
    通讯作者:

    黄沙,Email:stellarahuang@sina.com

Preliminary investigation on the wound healing effect of three-dimensional bioprinting ink containing human adipose-derived protein complexes

Funds: 

Science Fund for Creative Research Groups of National Natural Science Foundation of China 81721092

Key Program of National Natural Science Foundation of China 81830064

Youth Science Foundation Project of National Natural Science Foundation of China 32000969, 82002056

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences 2019-I2M-5-059

Military Medical Innovation Research Project of PLA General Hospital CX19026

Wang Zhengguo Foundation for Traumatic Medicine Growth Factor Rejuvenation Plan SZYZ-TR-03

More Information
    Corresponding author: Huang Sha, Email: stellarahuang@sina.com
  • 摘要:     目的   探讨人脂肪来源蛋白复合物(ADPC)对人皮肤成纤维细胞(HSF)和人脐静脉内皮细胞(HUVEC)增殖和迁移能力的影响,以及含ADPC的三维生物打印墨水(Bioink)在裸鼠全层皮肤缺损创面中的修复效应。    方法   采用实验研究方法。收集解放军总医院2020年10月—2021年3月收治的3例行腹部皮瓣转移修补术的女性慢性创面患者(年龄29~34岁)的废弃皮下脂肪组织和同期收治的3名行腹部抽脂术的健康女性(年龄24~36岁)的废弃抽脂术脂肪组织,分别制备正常ADPC(nADPC)及抽脂术ADPC(lADPC)。采用二辛丁酸法测定2种ADPC的蛋白浓度,计算2种ADPC的提取效率,样本数均为3。取对数生长期HSF和HUVEC进行后续实验。取2种细胞均按随机数字表法(分组方法下同)分为磷酸盐缓冲液(PBS)对照组、4 μg/mL nADPC组、20 μg/mL nADPC组、100 μg/mL nADPC组和200 μg/mL nADPC组,每组5孔。PBS对照组细胞采用PBS培养,余4组分别采用含相应终质量浓度的nADPC培养。常规培养24 h,采用细胞计数试剂盒8法检测细胞增殖活力。取HSF和HUVEC,分为PBS对照组、单纯nADPC组、单纯lADPC组、单纯肿瘤坏死因子α(TNF-α)组、TNF-α+nADPC组、TNF-α+lADPC组。PBS对照组与单纯TNF-α组细胞分别加入PBS,单纯nADPC组、单纯lADPC组、TNF-α+nADPC组及TNF-α+lADPC组中分别加入终质量浓度100 μg/mL的nADPC或lADPC,单纯TNF-α组、TNF-α+nADPC组及TNF-α+lADPC组再加入终质量浓度20 ng/mL的TNF-α。进行细胞划痕试验后计算划痕后24 h细胞迁移率(样本数为3),同前检测培养24 h细胞增殖活力(样本数为5)。取明胶-海藻酸钠复合Bioink(Bioink AG),制备含100 μg/mL lADPC的Bioink AG(lADPC-Bioink AG),观察二者在室温下及冷凝后的形态和三维生物打印且交联后的形态,采用流变仪检测流变性能时记录低温成胶时间(样本数为3)。取20只8~10周龄雌性BALB/c-NU裸鼠,建立背部全层皮肤缺损创面模型后,分为常规换药组、单纯lADPC组、单纯Bioink AG组和lADPC-Bioink AG组,每组5只。常规换药组裸鼠创面仅覆盖水胶体敷料和常规换药,其余3组裸鼠创面另予相应lADPC、Bioink AG、lADPC-Bioink AG处理。从治疗0 d起,行大体观察,计算治疗2、6、10 d的创面愈合率。治疗10 d,采用苏木精-伊红染色行创面组织病理学观察。对数据行独立样本t检验、单因素方差分析、重复测量方差分析、SNK-q检验及LSD-t检验。    结果   lADPC的蛋白浓度、提取效率分别为(1.306±0.011)mg/mL、(11.1±1.5)%,明显低于nADPC的(2.039±0.042)mg/mL、(22.2±2.0)%(t=23.83、6.38,P<0.05或P<0.01)。培养24 h,与PBS对照组比较,100 μg/mL nADPC组和200 μg/mL nADPC组HSF(q=6.943、6.375,P<0.01)和HUVEC(q=6.301、6.496,P<0.01)增殖活力均明显下降;与100 μg/mL nADPC组比较,200 μg/mL nADPC组HSF和HUVEC增殖活力无明显变化(P>0.05)。划痕后24 h,与PBS对照组比较,单纯nADPC组、单纯lADPC组、单纯TNF-α组HSF和HUVEC迁移率均明显降低(q=5.642、6.645、11.480,4.772、6.298、10.420,P<0.05或P<0.01);与单纯nADPC组比较,单纯lADPC组HSF和HUVEC迁移率无明显变化(P>0.05);与单纯TNF-α组比较,TNF-α+nADPC组、TNF-α+lADPC组HSF迁移率无明显变化(P>0.05),HUVEC迁移率均明显升高(q=8.585、7.253,P<0.01);与TNF-α+nADPC组比较,TNF-α+lADPC组HSF和HUVEC迁移率无明显变化(P>0.05)。培养24 h,与PBS对照组比较,单纯nADPC组、单纯lADPC组、单纯TNF-α组HSF和HUVEC增殖活力均明显降低(q=5.803、5.371、9.136,11.580、9.493、13.510,P<0.05或P<0.01);与单纯nADPC组比较,单纯lADPC组HSF和HUVEC增殖活力均无明显变化(P>0.05);与单纯TNF-α组比较,TNF-α+nADPC组、TNF-α+lADPC组HSF(q=14.990、10.850,P<0.01)和HUVEC(q=7.066、8.942,P<0.01)增殖活力均明显升高;与TNF-α+nADPC组比较,TNF-α+lADPC组HSF和HUVEC增殖活力均无明显变化(P>0.05)。室温及冷凝状态下,lADPC-Bioink AG比Bioink AG外观稍显浑浊;三维生物打印且交联后lADPC-Bioink AG与Bioink AG形态类似。在10 ℃时,lADPC-Bioink AG的凝固时间为(76.6±0.4)s,明显慢于Bioink AG的(74.4±0.6)s(t=4.64,P<0.01)。治疗2 d,常规换药组裸鼠创面渗出较多,其余3组无明显渗出;治疗8 d,lADPC-Bioink AG组裸鼠残余创面面积最小,有明显上皮覆盖。治疗2 d,lADPC-Bioink AG组裸鼠创面愈合率明显高于单纯lADPC组(t=3.59,P<0.05),与常规换药组、单纯Bioink AG组相近(P>0.05);治疗6 d,lADPC-Bioink AG组裸鼠创面愈合率明显高于常规换药组、单纯lADPC组、单纯Bioink AG组(t=18.70、15.70、3.15,P<0.05或P<0.01);治疗10 d,lADPC-Bioink AG组裸鼠创面愈合率明显高于常规换药组、单纯lADPC组(t=12.51、4.84,P<0.01),与单纯Bioink AG组相近(P>0.05)。治疗10 d,lADPC-Bioink AG组裸鼠创面组织血管化程度适中,上皮化充分,愈合效果最好。    结论   抽脂术相关操作会降低ADPC蛋白浓度、提取效率等表征,但lADPC与nADPC具有相同的生物学作用,可在非炎症环境中抑制HSF与HUVEC的增殖与迁移能力,在炎症环境中提高HSF与HUVEC的增殖活力,同时提高HUVEC的迁移能力;将lADPC加入Bioink AG中后,不会明显影响Bioink AG的物理性质及打印性能,并可以提升裸鼠全层皮肤缺损创面的修复效果。

     

  • 1  划痕试验观察6组人皮肤成纤维细胞划痕后各时间点迁移情况 倒置荧光显微镜×50,图中标尺为500 μm。1A、1B、1C、1D、1E、1F.分别为磷酸盐缓冲液(PBS)对照组、单纯正常脂肪来源蛋白复合物(nADPC)组、单纯抽脂术脂肪来源蛋白复合物(lADPC)组、单纯肿瘤坏死因子α(TNF-α)组、TNF-α+nADPC组、TNF-α+lADPC组划痕后即刻;1G、1H、1I、1J、1K、1L.分别为PBS对照组、单纯nADPC组、单纯lADPC组、单纯TNF-α组、TNF-α+nADPC组、TNF-α+lADPC组划痕后24 h,图1G剩余划痕面积最小,图1H、1I剩余划痕面积相近,图1J、1K、1L剩余划痕面积相近且均大于图1H、1I

    2  划痕试验观察6组人脐静脉内皮细胞划痕后各时间点迁移情况 倒置荧光显微镜×50,图中标尺为500 μm。2A、2B、2C、2D、2E、2F.分别为磷酸盐缓冲液(PBS)对照组、单纯正常脂肪来源蛋白复合物(nADPC)组、单纯抽脂术脂肪来源蛋白复合物(lADPC)组、单纯肿瘤坏死因子α(TNF-α)组、TNF-α+nADPC组、TNF-α+lADPC组划痕后即刻;2G、2 H、2I、2J、2K、2L.分别为PBS对照组、单纯nADPC组、单纯lADPC组、单纯TNF-α组、TNF-α+nADPC组、TNF-α+lADPC组划痕后24 h,图2G剩余划痕面积最小,图2H、2I剩余划痕面积相近,图2J剩余划痕面积最大,图2K、2L细胞剩余划痕面积相近

    3  明胶-海藻酸钠复合三维生物打印墨水(Bioink AG)与含抽脂术脂肪来源蛋白复合物的Bioink AG(lADPC-Bioink AG)室温、冷凝下、三维生物打印且交联后形态。3A、3B.分别为Bioink AG与lADPC-Bioink AG室温下形态,图3B较图3A浑浊;3C、3D.分别为Bioink AG与lADPC-Bioink AG冷凝下形态,图3D较图3C浑浊;3E、3F.分别为Bioink AG与lADPC-Bioink AG三维生物打印且交联后形态,二者外观无明显区别

    4  4组全层皮肤缺损裸鼠治疗各时间点创面大体情况。4A.常规换药组治疗2 d可见大量淡黄色渗出物覆盖创面;4B.单纯抽脂术脂肪来源蛋白复合物(lADPC)组治疗2 d创面湿润,无明显渗出;4C.单纯明胶-海藻酸钠复合三维生物打印墨水(Bioink AG)组治疗2 d创面打印组织有降解,无明显渗出;4D.lADPC-Bioink AG组治疗2 d打印组织覆盖创面,有降解,创面无明显渗出;4E.常规换药组治疗8 d创面干燥结痂,面积较图4A缩小,创面基底呈淡红色,无明显上皮覆盖;4F.单纯lADPC组治疗8 d创面面积较图4E缩小,创面基底呈鲜红色,无明显上皮覆盖;4G.单纯Bioink AG组治疗8 d创面面积较图4F缩小,创面基底呈淡粉色,有明显上皮覆盖;4H.lADPC-Bioink AG组治疗8 d创面面积最小,创面基底呈淡红色,有明显上皮覆盖

    5  4组全层皮肤缺损裸鼠治疗10 d组织形态 苏木精-伊红,图中标尺为1 mm。5A.常规换药组创面表面有痂覆盖,痂下见较多新生血管和炎症细胞浸润;5B.单纯抽脂术脂肪来源蛋白复合物(lADPC)组创面可见少量上皮细胞增殖,创面基底中有较多新生血管和炎症细胞浸润;5C.单纯明胶-海藻酸钠复合三维生物打印墨水(Bioink AG)组创面可见明显上皮细胞增殖,但创面基底中的新生血管较少;5D.lADPC-Bioink AG组创面可见明显上皮细胞增殖,创面基底新生血管较图5C多,较图5A、5B少

    表1  5组HSF和HUVEC常规培养24 h细胞增殖活力比较(x¯±s

    组别样本数HSFHUVEC
    PBS对照组51.013±0.0340.821±0.027
    4 μg/mL nADPC组51.109±0.0650.822±0.083
    20 μg/mL nADPC组50.886±0.0190.648±0.101
    100 μg/mL nADPC组50.792±0.0640.516±0.049
    200 μg/mL nADPC组50.810±0.0170.506±0.063
    F18.2610.32
    P<0.01<0.01
    q13.0150.030
    P1>0.05>0.05
    q24.0073.560
    P2>0.05>0.05
    q36.9436.301
    P3<0.01<0.01
    q46.3756.496
    P4<0.01<0.01
    q50.5680.195
    P5>0.05>0.05
    注:HSF为人皮肤成纤维细胞,HUVEC为人脐静脉内皮细胞,PBS为磷酸盐缓冲液,nADPC为正常脂肪来源蛋白复合物;F值、P值为2种细胞5组间总体比较所得;q1值、P1值,q2值、P2值,q3值、P3值,q4值、P4值分别为PBS对照组与4 μg/mL nADPC组、20 μg/mL nADPC组、100 μg/mL nADPC组、200 μg/mL nADPC组比较所得;q5值、P5值为100 μg/mL nADPC组与200 μg/mL nADPC组比较所得
    下载: 导出CSV

    表2  6组HSF和HUVEC划痕后24 h细胞迁移率比较(%,x¯±s

    组别样本数HSFHUVEC
    PBS对照组368.1±2.756.8±3.3
    单纯nADPC组355.3±2.444.3±4.6
    单纯lADPC组353.0±5.540.3±2.8
    单纯TNF-α组342.0±2.629.6±5.1
    TNF-α+nADPC组346.0±2.752.0±2.9
    TNF-α+lADPC组347.6±2.248.5±2.5
    F16.4813.48
    P<0.01<0.01
    q15.6424.772
    P1<0.05<0.05
    q26.6456.298
    P2<0.01<0.01
    q311.48010.420
    P3<0.01<0.01
    q41.0031.526
    P4>0.05>0.05
    q51.7608.585
    P5>0.05<0.01
    q62.4867.253
    P6>0.05<0.01
    q70.7261.331
    P7>0.05>0.05
    注:HSF为人皮肤成纤维细胞,HUVEC为人脐静脉内皮细胞,PBS为磷酸盐缓冲液,nADPC为正常脂肪来源蛋白复合物,lADPC为抽脂术脂肪来源蛋白复合物,TNF-α为肿瘤坏死因子α;F值、P值为2种细胞6组间总体比较所得;q1值、P1值,q2值、P2值,q3值、P3值分别为PBS对照组与单纯nADPC组、单纯lADPC组、单纯TNF-α组比较所得;q4值、P4值为单纯nADPC组与单纯lADPC组比较所得;q5值、P5值,q6值、P6值分别为单纯TNF-α组与TNF-α+nADPC组、TNF-α+lADPC组比较所得;q7值、P7值为TNF-α+nADPC组与TNF-α+lADPC组比较所得
    下载: 导出CSV

    表3  6组HSF和HUVEC常规培养24 h细胞增殖活力比较(x¯±s

    组别样本数HSFHUVEC
    PBS对照组51.01±0.030.821±0.027
    单纯nADPC组50.79±0.060.516±0.049
    单纯lADPC组50.81±0.040.571±0.028
    单纯TNF-α组50.66±0.060.465±0.046
    TNF-α+nADPC组51.24±0.050.651±0.031
    TNF-α+lADPC组51.08±0.080.700±0.037
    F31.2424.53
    P<0.01<0.01
    q15.80311.580
    P1<0.05<0.01
    q25.3719.493
    P2<0.05<0.01
    q39.13613.510
    P3<0.01<0.01
    q40.4322.088
    P4>0.05>0.05
    q514.9907.066
    P5<0.01<0.01
    q610.8508.942
    P6<0.01<0.01
    q74.1381.876
    P7>0.05>0.05
    注:HSF为人皮肤成纤维细胞,HUVEC为人脐静脉内皮细胞,PBS为磷酸盐缓冲液,nADPC为正常脂肪来源蛋白复合物,lADPC为抽脂术脂肪来源蛋白复合物,TNF-α为肿瘤坏死因子α;F值、P值为2种细胞6组间总体比较所得;q1值、P1值,q2值、P2值,q3值、P3值分别为PBS对照组与单纯nADPC组、单纯lADPC组、单纯TNF-α组比较所得;q4值、P4值为单纯nADPC组与单纯lADPC组比较所得;q5值、P5值,q6值、P6值分别为单纯TNF-α组与TNF-α+nADPC组、TNF-α+lADPC组比较所得;q7值、P7值为TNF-α+nADPC组与TNF-α+lADPC组比较所得
    下载: 导出CSV

    表4  4组全层皮肤缺损裸鼠治疗各时间点创面愈合率比较(%,x¯±s

    组别鼠数(只)2 d6 d10 d
    常规换药组311.4±2.045.2±2.277.3±1.9
    单纯lADPC组34.2±1.651.0±1.990.5±1.6
    单纯Bioink AG组37.4±0.775.5±2.198.1±2.4
    lADPC-Bioink AG组39.0±0.781.6±1.499.4±0.9
    F10.01169.1065.83
    P<0.01<0.01<0.01
    t11.7418.7012.51
    P1>0.05<0.01<0.01
    t23.5915.704.84
    P2<0.05<0.01<0.01
    t31.193.150.72
    P3>0.05<0.05>0.05
    注:lADPC为抽脂术脂肪来源蛋白复合物,Bioink AG为明胶-海藻酸钠复合三维生物打印墨水;处理因素主效应,F=109.30,P<0.01;时间因素主效应,F=7 273.00,P<0.01;两者交互作用,F=97.48,P<0.01;F值、P值为各时间点组间总体比较所得;t1值、P1值,t2值、P2值,t3值、P3值分别为常规换药组、单纯lADPC组、单纯Bioink AG组与1ADPC-Bioink AG组各时间点比较所得
    下载: 导出CSV
  • [1] MascharakS, desJardins-ParkHE, DavittMF, et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J].Science,2021,372(6540):eaba2374. DOI: 10.1126/science.aba2374.
    [2] ZhangJ, ZhengYJ, LeeJ, et al. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing[J]. Nat Commun,2021,12(1):1670. DOI: 10.1038/s41467-021-21964-0.
    [3] GriffinDR, ArchangMM, KuanCH, et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing[J]. Nat Mater,2021,20(4):560-569. DOI: 10.1038/s41563-020-00844-w.
    [4] GriffinDR,WeaverWM,ScumpiaPO, et al. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks[J].Nat Mater,2015,14(7):737-744. DOI: 10.1038/nmat4294.
    [5] NgWL, WangS, YeongWY, et al. Skin bioprinting: impending reality or fantasy?[J]. Trends Biotechnol,2016,34(9):689-699. DOI: 10.1016/j.tibtech.2016.04.006.
    [6] WonJY,LeeMH,KimMJ, et al. A potential dermal substitute using decellularized dermis extracellular matrix derived bio-ink[J].Artif Cells Nanomed Biotechnol,2019,47(1):644-649. DOI: 10.1080/21691401.2019.1575842.
    [7] ChimeneD, KaunasR, GaharwarAK. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies[J]. Adv Mater,2020,32(1):e1902026. DOI: 10.1002/adma.201902026.
    [8] ValotL,MartinezJ,MehdiA, et al. Chemical insights into bioinks for 3D printing[J].Chem Soc Rev,2019,48(15):4049-4086. DOI: 10.1039/c7cs00718c.
    [9] SomasekharanLT,RajuR,KumarS, et al. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink[J].Int J Biol Macromol,2021,189:398-409. DOI: 10.1016/j.ijbiomac.2021.08.114.
    [10] ChenXF,YueZL,WinbergPC, et al. 3D bioprinting dermal-like structures using species-specific ulvan[J].Biomater Sci,2021,9(7):2424-2438. DOI: 10.1039/d0bm01784a.
    [11] ChoudhuryD, TunHW, WangTY, et al. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing?[J]. Trends Biotechnol,2018,36(8):787-805. DOI: 10.1016/j.tibtech.2018.03.003.
    [12] ShookB, Rivera GonzalezG, EbmeierS, et al. The role of adipocytes in tissue regeneration and stem cell niches[J]. Annu Rev Cell Dev Biol,2016,32:609-631. DOI: 10.1146/annurev-cellbio-111315-125426.
    [13] Guerrero-JuarezCF,PlikusMV.Emerging nonmetabolic functions of skin fat[J].Nat Rev Endocrinol,2018,14(3):163-173. DOI: 10.1038/nrendo.2017.162.
    [14] ZwickRK, Guerrero-JuarezCF, HorsleyV, et al. Anatomical, physiological, and functional diversity of adipose tissue[J]. Cell Metab,2018,27(1):68-83. DOI: 10.1016/j.cmet.2017.12.002.
    [15] ZhangZZ,ShaoML,HeplerC, et al. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice[J].J Clin Invest,2019,129(12):5327-5342. DOI: 10.1172/JCI130239.
    [16] SarkanenJR,RuusuvuoriP,KuokkanenH, et al. Bioactive acellular implant induces angiogenesis and adipogenesis and sustained soft tissue restoration in vivo[J].Tissue Eng Part A,2012,18(23/24):2568-2580. DOI: 10.1089/ten.TEA.2011.0724.
    [17] HeYF,LinMH,WangXC, et al. Optimized adipose tissue engineering strategy based on a neo-mechanical processing method[J].Wound Repair Regen,2018,26(2):163-171. DOI: 10.1111/wrr.12640.
    [18] SarkanenJR,KailaV,MannerströmB, et al. Human adipose tissue extract induces angiogenesis and adipogenesis in vitro[J].Tissue Eng Part A,2012,18(1/2):17-25. DOI: 10.1089/ten.TEA.2010.0712.
    [19] LiZ, HuangS, LiuYF, et al. Tuning alginate-gelatin bioink properties by varying solvent and their impact on stem cell behavior[J]. Sci Rep,2018,8(1):8020. DOI: 10.1038/s41598-018-26407-3.
    [20] LiuYF,LiJJ,YaoB, et al. The stiffness of hydrogel-based bioink impacts mesenchymal stem cells differentiation toward sweat glands in 3D-bioprinted matrix[J].Mater Sci Eng C Mater Biol Appl,2021,118:111387. DOI: 10.1016/j.msec.2020.111387.
    [21] WeiLC,LiZ,LiJJ, et al. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles[J].J Mater Sci Mater Med,2020,31(11):103. DOI: 10.1007/s10856-020-06440-3.
    [22] ChangM, NguyenTT. Strategy for treatment of infected fiabetic foot ulcers[J]. Acc Chem Res,2021,54(5):1080-1093. DOI: 10.1021/acs.accounts.0c00864.
    [23] NinanN,ThomasS,GrohensY.Wound healing in urology[J].Adv Drug Deliv Rev,2015(82/83):93-105. DOI: 10.1016/j.addr.2014.12.002.
    [24] WalkerJT,McLeodK,KimS, et al. Periostin as a multifunctional modulator of the wound healing response[J].Cell Tissue Res,2016,365(3):453-465. DOI: 10.1007/s00441-016-2426-6.
    [25] ChouhanD,DeyN,BhardwajN, et al. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances[J].Biomaterials,2019,216:119267. DOI: 10.1016/j.biomaterials.2019.119267.
    [26] RodriguesM, KosaricN, BonhamCA, et al. Wound healing: a cellular perspective[J]. Physiol Rev,2019,99(1):665-706. DOI: 10.1152/physrev.00067.2017.
    [27] DongMW,LiM,ChenJ, et al. Activation of α7nAChR promotes diabetic wound healing by suppressing AGE-induced TNF-α production[J].Inflammation,2016,39(2):687-699. DOI: 10.1007/s10753-015-0295-x.
    [28] YenYH,PuCM,LiuCW, et al. Curcumin accelerates cutaneous wound healing via multiple biological actions: the involvement of TNF-α, MMP-9, α-SMA, and collagen[J].Int Wound J,2018,15(4):605-617. DOI: 10.1111/iwj.12904.
    [29] ZhouDJ, LiuTF, WangS, et al. Effects of IL-1β and TNF-α on the expression of P311 in vascular endothelial cells and wound healing in mice[J]. Front Physiol,2020,11:545008. DOI: 10.3389/fphys.2020.545008.
    [30] GurtnerGC,WernerS,BarrandonY, et al. Wound repair and regeneration[J].Nature,2008,453(7193):314-321. DOI: 10.1038/nature07039.
    [31] SpiekmanM,PrzybytE,PlantingaJA, et al. Adipose tissue- derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion[J].Plast Reconstr Surg,2014,134(4):699-712. DOI: 10.1097/PRS.0000000000000504.
    [32] KruglikovIL, SchererPE. Dermal adipocytes: from irrelevance to metabolic targets?[J]. Trends Endocrinol Metab,2016,27(1):1-10. DOI: 10.1016/j.tem.2015.11.002.
    [33] SpiekmanM,van DongenJA,WillemsenJC, et al. The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment[J].J Tissue Eng Regen Med,2017,11(11):3220-3235. DOI: 10.1002/term.2213.
    [34] KoleskyDB,TrubyRL,GladmanAS, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs[J].Adv Mater,2014,26(19):3124-3130. DOI: 10.1002/adma.201305506.
    [35] NingLQ,GilCJ,HwangB, et al. Biomechanical factors in three-dimensional tissue bioprinting[J].Appl Phys Rev,2020,7(4):041319. DOI: 10.1063/5.0023206.
    [36] KimBS,KwonYW,KongJS, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering[J].Biomaterials,2018,168:38-53. DOI: 10.1016/j.biomaterials.2018.03.040.
    [37] YaoB,WangR,WangYH, et al. Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094. DOI: 10.1126/sciadv.aaz1094.
    [38] WangSF, WangXH, NeufurthM, et al. Biomimetic alginate/gelatin cross-linked hydrogels supplemented with polyphosphate for wound healing applications[J]. Molecules, 2020, 25(21):5210. DOI: 10.3390/molecules25215210.
    [39] KaravasiliC,TsongasK,AndreadisII, et al. Physico-mechanical and finite element analysis evaluation of 3D printable alginate- methylcellulose inks for wound healing applications[J].Carbohydr Polym,2020,247:116666. DOI: 10.1016/j.carbpol.2020.116666.
    [40] TurnerPR,MurrayE,McAdamCJ, et al. Peptide chitosan/dextran core/shell vascularized 3D constructs for wound healing[J].ACS Appl Mater Interfaces,2020,12(29):32328-32339. DOI: 10.1021/acsami.0c07212.
  • 张超视频解读~1.mp4
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  2537
  • HTML全文浏览量:  54
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13

目录

    /

    返回文章
    返回