留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干细胞治疗糖尿病足创面的研究进展

林志琥 王君 梁尊鸿 潘云川

林志琥, 王君, 梁尊鸿, 等. 干细胞治疗糖尿病足创面的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(3): 281-286. DOI: 10.3760/cma.j.cn501120-20210828-00292.
引用本文: 林志琥, 王君, 梁尊鸿, 等. 干细胞治疗糖尿病足创面的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(3): 281-286. DOI: 10.3760/cma.j.cn501120-20210828-00292.
Lin ZH,Wang J,Liang ZH,et al.Research advances on stem cell therapy for diabetic foot wounds[J].Chin J Burns Wounds,2022,38(3):281-286.DOI: 10.3760/cma.j.cn501120-20210828-00292.
Citation: Lin ZH,Wang J,Liang ZH,et al.Research advances on stem cell therapy for diabetic foot wounds[J].Chin J Burns Wounds,2022,38(3):281-286.DOI: 10.3760/cma.j.cn501120-20210828-00292.

干细胞治疗糖尿病足创面的研究进展

doi: 10.3760/cma.j.cn501120-20210828-00292
基金项目: 

海南省院士创新平台科研专项 ysptzx202028

海南省基础与应用基础研究计划 821RC676

详细信息
    通讯作者:

    潘云川,Email:pychuan@qq.com

Research advances on stem cell therapy for diabetic foot wounds

Funds: 

The Specific Research Fund of the Innovation Platform for Academicians of Hainan Province ysptzx202028

Basic and Applied Basic Research Programs of Hainan Province of China 821RC676

More Information
    Corresponding author: Pan Yunchuan, Email: pychuan@qq.com
  • 摘要:

    糖尿病足创面修复是临床棘手问题,由于机体局部组织损毁且再生障碍,通过血管、神经营养修复创面的途径受损,多种细胞因子紊乱等多因素影响,传统治疗方法往往难以取得良好治疗效果。干细胞是一类具有多向分化潜能的细胞,且具有免疫调节、旁分泌等功能,有助于全方位修复创面,目前在糖尿病足创面中极具应用前景。但由于干细胞治疗相关参数仍然处于探索阶段,尚无标准化数据。本文综述了近6年来干细胞在糖尿病足创面治疗研究中的应用,重点对研究中的干细胞类型和来源,供体年龄、性别对干细胞的影响,给药方式,移植存活率,安全性等内容进行总结和分析,为干细胞进一步应用于临床上糖尿病足创面的治疗提供参考。

     

  • 参考文献(47)

    [1] ReardonR, SimringD, KimB, et al. The diabetic foot ulcer[J]. Aust J Gen Pract, 2020,49(5):250-255. DOI: 10.31128/AJGP-11-19-5161.
    [2] HeubleinH, BaderA, GiriS. Preclinical and clinical evidence for stem cell therapies as treatment for diabetic wounds[J]. Drug Discov Today, 2015,20(6):703-717. DOI: 10.1016/j.drudis.2015.01.005.
    [3] YanJX, LiangJJ, CaoYX, et al. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds[J]. Stem Cell Res Ther, 2021,12(1):220. DOI: 10.1186/s13287-021-02288-8.
    [4] WangP, TheocharidisG, VlachosIS, et al. Exosomes derived from epidermal stem cells improve diabetic wound healing[J/OL]. J Invest Dermatol, 2022:S0022-202X(22)00119-1(2022-02-15)[2022-02-23]. https://pubmed.ncbi.nlm.nih.gov/35181300/.DOI: 10.1016/j.jid.2022.01.030. [published online ahead of print].
    [5] ZhaoLL, GuoZ, ChenK, et al. Combined transplantation of mesenchymal stem cells and endothelial colony-forming cells accelerates refractory diabetic foot ulcer healing[J]. Stem Cells Int,2020,2020:8863649. DOI: 10.1155/2020/8863649.
    [6] 杜俊文, 吴韬, 张坤, 等. 脐带间充质干细胞联合骨髓干细胞治疗下肢缺血[J]. 中国组织工程研究,2017,21(1):82-86. DOI: 10.3969/j.issn.2095-4344.2017.01.015.
    [7] LuDB, JiangYZ, DengWQ, et al. Long-term outcomes of BMMSC compared with BMMNC for treatment of critical limb ischemia and foot ulcer in patients with diabetes[J]. Cell Transplant,2019,28(5):645-652. DOI: 10.1177/0963689719835177.
    [8] WuQN, LeiXT, ChenL, et al. Autologous platelet-rich gel combined with in vitro amplification of bone marrow mesenchymal stem cell transplantation to treat the diabetic foot ulcer: a case report[J]. Ann Transl Med,2018,6(15):307. DOI: 10.21037/atm.2018.07.12.
    [9] KočíZ, TurnovcováK, DubskýM, et al. Characterization of human adipose tissue-derived stromal cells isolated from diabetic patient's distal limbs with critical ischemia[J]. Cell Biochem Funct,2014,32(7):597-604. DOI: 10.1002/cbf.3056.
    [10] YangPH, ShenWB, ReeceEA, et al. High glucose suppresses embryonic stem cell differentiation into neural lineage cells[J]. Biochem Biophys Res Commun,2016,472(2):306-312. DOI: 10.1016/j.bbrc.2016.02.117.
    [11] Mohamed-AhmedS, YassinMA, RashadA, et al. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells[J]. Cell Tissue Res,2021,383(3):1061-1075. DOI: 10.1007/s00441-020-03315-5.
    [12] PillK, MelkeJ, MühlederS, et al. Microvascular networks from endothelial cells and mesenchymal stromal cells from adipose tissue and bone marrow: a comparison[J]. Front Bioeng Biotechnol,2018,6:156. DOI: 10.3389/fbioe.2018.00156.
    [13] SukhoP, HesselinkJW, KopsN, et al. Human mesenchymal stromal cell sheets induce macrophages predominantly to an anti-inflammatory phenotype[J]. Stem Cells Dev,2018,27(13):922-934. DOI: 10.1089/scd.2017.0275.
    [14] ShiRF, LianWS, JinYP, et al. Role and effect of vein-transplanted human umbilical cord mesenchymal stem cells in the repair of diabetic foot ulcers in rats[J]. Acta Biochim Biophys Sin (Shanghai),2020,52(6):620-630. DOI: 10.1093/abbs/gmaa039.
    [15] BakshD, YaoR, TuanRS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow[J]. Stem Cells,2007,25(6):1384-1392. DOI: 10.1634/stemcells.2006-0709.
    [16] VidalMA, WalkerNJ, NapoliE, et al. Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue[J]. Stem Cells Dev,2012,21(2):273-283. DOI: 10.1089/scd.2010.0589.
    [17] KernS, EichlerH, StoeveJ, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[J]. Stem Cells,2006,24(5):1294-1301. DOI: 10.1634/stemcells.2005-0342.
    [18] ZeddouM, RelicB, MalaiseMG. Umbilical cord fibroblasts: could they be considered as mesenchymal stem cells?[J]. World J Stem Cells,2014,6(3):367-370. DOI: 10.1634/stemcells.2005-0342.
    [19] ScatenaA, PetruzziP, MaioliF, et al. Autologous peripheral blood mononuclear cells for limb salvage in diabetic foot patients with no-option critical limb ischemia[J]. J Clin Med,2021,10(10):2213. DOI: 10.3390/jcm10102213.
    [20] GoreckaJ, GaoXX, FereydooniA, et al. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing[J]. Regen Med,2020,15(2):1277-1293. DOI: 10.2217/rme-2019-0086.
    [21] SatoH, EbisawaK, TakanariK, et al. Skin-derived precursor cells promote wound healing in diabetic mice[J]. Ann Plast Surg,2015,74(1):114-120. DOI: 10.1097/SAP.0000000000000342.
    [22] ChoudheryMS, BadowskiM, MuiseA, et al. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation[J]. J Transl Med,2014,12:8. DOI: 10.1186/1479-5876-12-8.
    [23] BeaneOS, FonsecaVC, CooperLL, et al. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells[J]. PLoS One,2014,9(12):e115963. DOI: 10.1371/journal.pone.0115963.
    [24] SiegelG, KlubaT, Hermanutz-KleinU, et al. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells[J]. BMC Med,2013,11:146. DOI: 10.1186/1741-7015-11-146.
    [25] YanJX, LiangJJ, CaoYX, et al. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds[J]. Stem Cell Res Ther,2021,12(1):220. DOI: 10.1186/s13287-021-02288-8.
    [26] Sanchez-DiazM, Quiñones-VicoMI, Sanabria de la Torre R, et al. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: a systematic review[J]. J Clin Med,2021,10(13):2925. DOI: 10.3390/jcm10132925.
    [27] LeeRH, SeoMJ, PulinAA, et al. The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice[J]. Blood,2009,113(4):816-826. DOI: 10.1182/blood-2007-12-128702.
    [28] AmerMH, FRAJRose, ShakesheffKM, et al. A biomaterials approach to influence stem cell fate in injectable cell-based therapies[J]. Stem Cell Res Ther,2018,9(1):39. DOI: 10.1186/s13287-018-0789-1.
    [29] KatoY, IwataT, MorikawaS, et al. Allogeneic transplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity[J]. Diabetes,2015,64(8):2723-2734. DOI: 10.2337/db14-1133.
    [30] HuangS, YaoB, XieJF, et al. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J]. Acta Biomater,2016,32:170-177. DOI: 10.1016/j.actbio.2015.12.039.
    [31] WangJ, ZengXX, CaiW, et al. Safety and efficacy of placenta-derived mesenchymal stem cell treatment for diabetic patients with critical limb ischemia: a pilot study[J]. Exp Clin Endocrinol Diabetes,2021,129(7):542-548.DOI: 10.1055/a-0978-4972.
    [32] YangHY, FierroF, SoM, et al. Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice[J]. Stem Cells Transl Med,2020,9(11):1353-1364. DOI: 10.1002/sctm.19-0380.
    [33] SeoE, LimJS, JunJB, et al. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing[J]. J Transl Med,2017,15(1):35. DOI: 10.1186/s12967-017-1145-4.
    [34] De GregorioC, ContadorD, DíazD, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice[J]. Stem Cell Res Ther,2020,11(1):168. DOI: 10.1186/s13287-020-01680-0.
    [35] ChokesuwattanaskulS, SukpatS, DuangpatraJ, et al. High dose oral vitamin C and mesenchymal stem cells aid wound healing in a diabetic mouse model[J]. J Wound Care,2018,27(5):334-339. DOI: 10.12968/jowc.2018.27.5.334.
    [36] ZhuLY, WangGX, FischbachS, et al. Suppression of microRNA-205-5p in human mesenchymal stem cells improves their therapeutic potential in treating diabetic foot disease[J]. Oncotarget,2017,8(32):52294-52303. DOI: 10.18632/oncotarget.17012.
    [37] ShawkyLM, El BanaEA, MorsiAA. Stem cells and metformin synergistically promote healing in experimentally induced cutaneous wound injury in diabetic rats[J]. Folia Histochem Cytobiol,2019,57(3):127-138. DOI: 10.5603/FHC.a2019.0014.
    [38] AriyantiAD, ZhangJQ, MarcelinaO, et al. Salidroside- pretreated mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of mesenchymal stem cells under hyperglycemia[J]. Stem Cells Transl Med,2019,8(4):404-414. DOI: 10.1002/sctm.18-0143.
    [39] MoradiA, ZareF, MostafaviniaA, et al. Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats[J]. Sci Rep,2020,10(1):1206. DOI: 10.1038/s41598-020-58099-z.
    [40] ShehadahA, ChenJL, PalA, et al. Human placenta-derived adherent cell treatment of experimental stroke promotes functional recovery after stroke in young adult and older rats[J]. PLoS One,2014,9(1):e86621. DOI: 10.1371/journal.pone.0086621.
    [41] CovaL, ArmenteroMT, ZennaroE, et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson's disease[J]. Brain Res, 2010,1311:12-27. DOI: 10.1016/j.brainres.2009.11.041.
    [42] LiangL, LiZJ, MaT,et al. Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats[J]. Cell Transplant,2017,26(1):45-61. DOI: 10.3727/096368916X692726.
    [43] BaiXW, YanYS, ColemanM, et al. Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging[J]. Mol Imaging Biol,2011,13(4):633-645. DOI: 10.1007/s11307-010-0392-z.
    [44] ShafiqM, JungY, KimSH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair[J]. Biomaterials,2016,90:85-115. DOI: 10.1016/j.biomaterials.2016.03.020.
    [45] HuCX, LiLJ. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo[J]. J Cell Mol Med,2018,22(3):1428-1442. DOI: 10.1111/jcmm.13492.
    [46] SkylerJS, FonsecaVA, SegalKR, et al. Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study[J]. Diabetes Care,2015,38(9):1742-1749. DOI: 10.2337/dc14-2830.
    [47] YuJL, ChanS, FungMK, et al. Mesenchymal stem cells accelerated growth and metastasis of neuroblastoma and preferentially homed towards both primary and metastatic loci in orthotopic neuroblastoma model[J]. BMC Cancer, 2021,21(1):393. DOI: 10.1186/s12885-021-08090-2.
  • 加载中
计量
  • 文章访问数:  793
  • HTML全文浏览量:  177
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-28

目录

    /

    返回文章
    返回