-
摘要:
糖尿病足创面修复是临床棘手问题,由于机体局部组织损毁且再生障碍,通过血管、神经营养修复创面的途径受损,多种细胞因子紊乱等多因素影响,传统治疗方法往往难以取得良好治疗效果。干细胞是一类具有多向分化潜能的细胞,且具有免疫调节、旁分泌等功能,有助于全方位修复创面,目前在糖尿病足创面中极具应用前景。但由于干细胞治疗相关参数仍然处于探索阶段,尚无标准化数据。本文综述了近6年来干细胞在糖尿病足创面治疗研究中的应用,重点对研究中的干细胞类型和来源,供体年龄、性别对干细胞的影响,给药方式,移植存活率,安全性等内容进行总结和分析,为干细胞进一步应用于临床上糖尿病足创面的治疗提供参考。
Abstract:Diabetic foot wound repair is a challenging issue in clinical practice. Due to the influence of multiple factors including the damage and regeneration failure of local tissue, the impaired pathways of wound repairing through blood vessels and nerve nutrition, and disorders of a variety of cellular factors, traditional treatment methods are often difficult to achieve good therapeutic effects. Stem cells are a type of cells with potentials of multidirectional differentiation, which also possess functions such as regulating immunity and paracrine to facilitate the comprehensive wound repair, so they have promising application prospect at present for the treatment of diabetic foot wounds. Because the relevant parameters of stem cell treatment are in the exploratory phase, there were no standardized data. This paper reviews the application of stem cells in the research of diabetic foot wound treatment over the past 6 years, analyzing and summarizing the contents in focused aspects including the types and sources of stem cells, effects of donor age and gender on stem cells, mode of administration, transplantation survival rate and safety, which may provide a reference for further application of stem cells in the clinical treatment of diabetic foot wound.
-
Key words:
- Stem cells /
- Diabetic foot /
- Route of administration /
- Stem cell dose /
- Safety
-
参考文献
(47) [1] ReardonR, SimringD, KimB, et al. The diabetic foot ulcer[J]. Aust J Gen Pract, 2020,49(5):250-255. DOI: 10.31128/AJGP-11-19-5161. [2] HeubleinH, BaderA, GiriS. Preclinical and clinical evidence for stem cell therapies as treatment for diabetic wounds[J]. Drug Discov Today, 2015,20(6):703-717. DOI: 10.1016/j.drudis.2015.01.005. [3] YanJX, LiangJJ, CaoYX, et al. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds[J]. Stem Cell Res Ther, 2021,12(1):220. DOI: 10.1186/s13287-021-02288-8. [4] WangP, TheocharidisG, VlachosIS, et al. Exosomes derived from epidermal stem cells improve diabetic wound healing[J/OL]. J Invest Dermatol, 2022:S0022-202X(22)00119-1(2022-02-15)[2022-02-23]. https://pubmed.ncbi.nlm.nih.gov/35181300/.DOI: 10.1016/j.jid.2022.01.030. [published online ahead of print]. [5] ZhaoLL, GuoZ, ChenK, et al. Combined transplantation of mesenchymal stem cells and endothelial colony-forming cells accelerates refractory diabetic foot ulcer healing[J]. Stem Cells Int,2020,2020:8863649. DOI: 10.1155/2020/8863649. [6] 杜俊文, 吴韬, 张坤, 等. 脐带间充质干细胞联合骨髓干细胞治疗下肢缺血[J]. 中国组织工程研究,2017,21(1):82-86. DOI: 10.3969/j.issn.2095-4344.2017.01.015. [7] LuDB, JiangYZ, DengWQ, et al. Long-term outcomes of BMMSC compared with BMMNC for treatment of critical limb ischemia and foot ulcer in patients with diabetes[J]. Cell Transplant,2019,28(5):645-652. DOI: 10.1177/0963689719835177. [8] WuQN, LeiXT, ChenL, et al. Autologous platelet-rich gel combined with in vitro amplification of bone marrow mesenchymal stem cell transplantation to treat the diabetic foot ulcer: a case report[J]. Ann Transl Med,2018,6(15):307. DOI: 10.21037/atm.2018.07.12. [9] KočíZ, TurnovcováK, DubskýM, et al. Characterization of human adipose tissue-derived stromal cells isolated from diabetic patient's distal limbs with critical ischemia[J]. Cell Biochem Funct,2014,32(7):597-604. DOI: 10.1002/cbf.3056. [10] YangPH, ShenWB, ReeceEA, et al. High glucose suppresses embryonic stem cell differentiation into neural lineage cells[J]. Biochem Biophys Res Commun,2016,472(2):306-312. DOI: 10.1016/j.bbrc.2016.02.117. [11] Mohamed-AhmedS, YassinMA, RashadA, et al. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells[J]. Cell Tissue Res,2021,383(3):1061-1075. DOI: 10.1007/s00441-020-03315-5. [12] PillK, MelkeJ, MühlederS, et al. Microvascular networks from endothelial cells and mesenchymal stromal cells from adipose tissue and bone marrow: a comparison[J]. Front Bioeng Biotechnol,2018,6:156. DOI: 10.3389/fbioe.2018.00156. [13] SukhoP, HesselinkJW, KopsN, et al. Human mesenchymal stromal cell sheets induce macrophages predominantly to an anti-inflammatory phenotype[J]. Stem Cells Dev,2018,27(13):922-934. DOI: 10.1089/scd.2017.0275. [14] ShiRF, LianWS, JinYP, et al. Role and effect of vein-transplanted human umbilical cord mesenchymal stem cells in the repair of diabetic foot ulcers in rats[J]. Acta Biochim Biophys Sin (Shanghai),2020,52(6):620-630. DOI: 10.1093/abbs/gmaa039. [15] BakshD, YaoR, TuanRS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow[J]. Stem Cells,2007,25(6):1384-1392. DOI: 10.1634/stemcells.2006-0709. [16] VidalMA, WalkerNJ, NapoliE, et al. Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue[J]. Stem Cells Dev,2012,21(2):273-283. DOI: 10.1089/scd.2010.0589. [17] KernS, EichlerH, StoeveJ, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[J]. Stem Cells,2006,24(5):1294-1301. DOI: 10.1634/stemcells.2005-0342. [18] ZeddouM, RelicB, MalaiseMG. Umbilical cord fibroblasts: could they be considered as mesenchymal stem cells?[J]. World J Stem Cells,2014,6(3):367-370. DOI: 10.1634/stemcells.2005-0342. [19] ScatenaA, PetruzziP, MaioliF, et al. Autologous peripheral blood mononuclear cells for limb salvage in diabetic foot patients with no-option critical limb ischemia[J]. J Clin Med,2021,10(10):2213. DOI: 10.3390/jcm10102213. [20] GoreckaJ, GaoXX, FereydooniA, et al. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing[J]. Regen Med,2020,15(2):1277-1293. DOI: 10.2217/rme-2019-0086. [21] SatoH, EbisawaK, TakanariK, et al. Skin-derived precursor cells promote wound healing in diabetic mice[J]. Ann Plast Surg,2015,74(1):114-120. DOI: 10.1097/SAP.0000000000000342. [22] ChoudheryMS, BadowskiM, MuiseA, et al. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation[J]. J Transl Med,2014,12:8. DOI: 10.1186/1479-5876-12-8. [23] BeaneOS, FonsecaVC, CooperLL, et al. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells[J]. PLoS One,2014,9(12):e115963. DOI: 10.1371/journal.pone.0115963. [24] SiegelG, KlubaT, Hermanutz-KleinU, et al. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells[J]. BMC Med,2013,11:146. DOI: 10.1186/1741-7015-11-146. [25] YanJX, LiangJJ, CaoYX, et al. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds[J]. Stem Cell Res Ther,2021,12(1):220. DOI: 10.1186/s13287-021-02288-8. [26] Sanchez-DiazM, Quiñones-VicoMI, Sanabria de la Torre R, et al. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: a systematic review[J]. J Clin Med,2021,10(13):2925. DOI: 10.3390/jcm10132925. [27] LeeRH, SeoMJ, PulinAA, et al. The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice[J]. Blood,2009,113(4):816-826. DOI: 10.1182/blood-2007-12-128702. [28] AmerMH, FRAJRose, ShakesheffKM, et al. A biomaterials approach to influence stem cell fate in injectable cell-based therapies[J]. Stem Cell Res Ther,2018,9(1):39. DOI: 10.1186/s13287-018-0789-1. [29] KatoY, IwataT, MorikawaS, et al. Allogeneic transplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity[J]. Diabetes,2015,64(8):2723-2734. DOI: 10.2337/db14-1133. [30] HuangS, YaoB, XieJF, et al. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration[J]. Acta Biomater,2016,32:170-177. DOI: 10.1016/j.actbio.2015.12.039. [31] WangJ, ZengXX, CaiW, et al. Safety and efficacy of placenta-derived mesenchymal stem cell treatment for diabetic patients with critical limb ischemia: a pilot study[J]. Exp Clin Endocrinol Diabetes,2021,129(7):542-548.DOI: 10.1055/a-0978-4972. [32] YangHY, FierroF, SoM, et al. Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice[J]. Stem Cells Transl Med,2020,9(11):1353-1364. DOI: 10.1002/sctm.19-0380. [33] SeoE, LimJS, JunJB, et al. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing[J]. J Transl Med,2017,15(1):35. DOI: 10.1186/s12967-017-1145-4. [34] De GregorioC, ContadorD, DíazD, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice[J]. Stem Cell Res Ther,2020,11(1):168. DOI: 10.1186/s13287-020-01680-0. [35] ChokesuwattanaskulS, SukpatS, DuangpatraJ, et al. High dose oral vitamin C and mesenchymal stem cells aid wound healing in a diabetic mouse model[J]. J Wound Care,2018,27(5):334-339. DOI: 10.12968/jowc.2018.27.5.334. [36] ZhuLY, WangGX, FischbachS, et al. Suppression of microRNA-205-5p in human mesenchymal stem cells improves their therapeutic potential in treating diabetic foot disease[J]. Oncotarget,2017,8(32):52294-52303. DOI: 10.18632/oncotarget.17012. [37] ShawkyLM, El BanaEA, MorsiAA. Stem cells and metformin synergistically promote healing in experimentally induced cutaneous wound injury in diabetic rats[J]. Folia Histochem Cytobiol,2019,57(3):127-138. DOI: 10.5603/FHC.a2019.0014. [38] AriyantiAD, ZhangJQ, MarcelinaO, et al. Salidroside- pretreated mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of mesenchymal stem cells under hyperglycemia[J]. Stem Cells Transl Med,2019,8(4):404-414. DOI: 10.1002/sctm.18-0143. [39] MoradiA, ZareF, MostafaviniaA, et al. Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats[J]. Sci Rep,2020,10(1):1206. DOI: 10.1038/s41598-020-58099-z. [40] ShehadahA, ChenJL, PalA, et al. Human placenta-derived adherent cell treatment of experimental stroke promotes functional recovery after stroke in young adult and older rats[J]. PLoS One,2014,9(1):e86621. DOI: 10.1371/journal.pone.0086621. [41] CovaL, ArmenteroMT, ZennaroE, et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson's disease[J]. Brain Res, 2010,1311:12-27. DOI: 10.1016/j.brainres.2009.11.041. [42] LiangL, LiZJ, MaT,et al. Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats[J]. Cell Transplant,2017,26(1):45-61. DOI: 10.3727/096368916X692726. [43] BaiXW, YanYS, ColemanM, et al. Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging[J]. Mol Imaging Biol,2011,13(4):633-645. DOI: 10.1007/s11307-010-0392-z. [44] ShafiqM, JungY, KimSH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair[J]. Biomaterials,2016,90:85-115. DOI: 10.1016/j.biomaterials.2016.03.020. [45] HuCX, LiLJ. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo[J]. J Cell Mol Med,2018,22(3):1428-1442. DOI: 10.1111/jcmm.13492. [46] SkylerJS, FonsecaVA, SegalKR, et al. Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study[J]. Diabetes Care,2015,38(9):1742-1749. DOI: 10.2337/dc14-2830. [47] YuJL, ChanS, FungMK, et al. Mesenchymal stem cells accelerated growth and metastasis of neuroblastoma and preferentially homed towards both primary and metastatic loci in orthotopic neuroblastoma model[J]. BMC Cancer, 2021,21(1):393. DOI: 10.1186/s12885-021-08090-2.
计量
- 文章访问数: 773
- HTML全文浏览量: 174
- PDF下载量: 116
- 被引次数: 0