留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性氧响应性抗菌微针对糖尿病小鼠细菌定植全层皮肤缺损创面的影响

张清荣 杨晓 李正 贾杰只 罗高兴 于云龙 张逸

张清荣, 杨晓, 李正, 等. 活性氧响应性抗菌微针对糖尿病小鼠细菌定植全层皮肤缺损创面的影响[J]. 中华烧伤杂志, 2021, 37(11): 1024-1035. DOI: 10.3760/cma.j.cn501120-20210831-00299.
引用本文: 张清荣, 杨晓, 李正, 等. 活性氧响应性抗菌微针对糖尿病小鼠细菌定植全层皮肤缺损创面的影响[J]. 中华烧伤杂志, 2021, 37(11): 1024-1035. DOI: 10.3760/cma.j.cn501120-20210831-00299.
Zhang QR,Yang X,Li Z,et al.Effects of reactive oxygen species-responsive antibacterial microneedles on the full-thickness skin defect wounds with bacterial colonization in diabetic mice[J].Chin J Burns,2021,37(11):1024-1035.DOI: 10.3760/cma.j.cn501120-20210831-00299.
Citation: Zhang QR,Yang X,Li Z,et al.Effects of reactive oxygen species-responsive antibacterial microneedles on the full-thickness skin defect wounds with bacterial colonization in diabetic mice[J].Chin J Burns,2021,37(11):1024-1035.DOI: 10.3760/cma.j.cn501120-20210831-00299.

活性氧响应性抗菌微针对糖尿病小鼠细菌定植全层皮肤缺损创面的影响

doi: 10.3760/cma.j.cn501120-20210831-00299
基金项目: 

重庆市自然科学基金 cstc2021jcyj-msxmX0513

南通市科技项目 JC2021178, HS2020006

详细信息
    通讯作者:

    于云龙,Email:yuyunlong666@gmail.com

    张逸,Email:198zy@163.com

Effects of reactive oxygen species-responsive antibacterial microneedles on the full-thickness skin defect wounds with bacterial colonization in diabetic mice

Funds: 

Natural Science Foundation of Chongqing Municipality of China cstc2021jcyj-msxmX0513

Nantong Science and Technology Project JC2021178, HS2020006

More Information
    Corresponding author: Yu Yunlong, Email: yuyunlong666@gmail.com; Zhang Yi, Email: 198zy@163.com
  • 摘要:     目的   研究活性氧响应性抗菌微针对糖尿病小鼠细菌定植全层皮肤缺损创面的影响。    方法   采用实验研究方法。合成活性氧响应性交联剂N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺(TSPBA),混合相应成分制成聚乙烯醇-TSPBA(PVA-TSPBA)微针、PVA-ε-聚赖氨酸(ε-PL)-TSPBA微针、PVA-TSPBA-透明质酸钠(SH)微针、PVA-ε-PL-TSPBA-SH微针。将PVA-TSPBA微针分别置于单纯磷酸盐缓冲液(PBS)和含过氧化氢的PBS中,观察浸泡0(即刻)、3、7、10 d微针降解情况,表示其活性氧响应性。将用含过氧化氢的LB培养基培养的金黄色葡萄球菌标准菌株与大肠埃希菌标准菌株各自按随机数字表法(分组方法下同)分为空白对照组(不行任何处理,下同)以及与含相应浓度ε-PL的PVA-ε-PL-TSPBA微针共培养的0 g/L ε-PL组、1.0 g/L ε-PL组、5.0 g/L ε-PL组、10.0 g/L ε-PL组,培养24 h,观察细菌生长情况并计算细菌相对存活率(样本数为3)。将对数生长期的小鼠成纤维细胞系3T3细胞(生长周期下同)分为空白对照组以及用含相应浓度ε-PL的PVA-ε-PL-TSPBA微针浸提液培养的0 g/L ε-PL组、1.0 g/L ε-PL组、5.0 g/L ε-PL组、10.0 g/L ε-PL组,培养24 h,用光学显微镜观察细胞生长情况,用细胞计数试剂盒8(CCK-8)法检测并计算细胞相对存活率(以此表示细胞毒性,样本数为6)。取PVA-TSPBA微针与PVA-TSPBA-SH微针,用光学显微镜观察2种微针形貌,用微机控制电子万能试验机检测2种微针机械性能(以临界力表示,样本数为6)。取6只6~8周龄雄性BALB/c小鼠(性别、鼠龄下同),分为PVA-TSPBA组与PVA-TSPBA-SH组(每组3只),用相应微针垂直按压背部皮肤1 min后,观察按压完成后0、10、20 min皮肤情况。另取3T3细胞,分为空白对照组,用含相应浓度ε-PL的PVA-ε-PL-TSPBA微针浸提液培养的0 g/L ε-PL组、单纯5.0 g/L ε-PL组,用含5.0 g/L ε-PL的PVA-ε-PL-TSPBA-SH微针浸提液培养的5.0 g/L ε-PL+SH组,CCK-8法检测并计算培养24、48、72 h细胞相对存活率,以此表示细胞增殖活性(样本数为6)。取18只BALB/c小鼠,通过高糖高脂饮食联合链脲佐菌素注射诱导为糖尿病小鼠模型后,分为无菌敷贴组、0 g/L ε-PL+SH组与5.0 g/L ε-PL+SH组(每组6只),在每只小鼠背部制作全层皮肤缺损创面后滴加金黄色葡萄球菌溶液,制成糖尿病小鼠细菌定植全层皮肤缺损创面模型,0 g/L ε-PL+SH组、5.0 g/L ε-PL+SH组小鼠创面覆盖含相应浓度ε-PL的PVA-ε-PL-TSPBA-SH微针后,3组小鼠创面均外覆无菌手术敷贴。于伤后0、3、7、12 d观察创面愈合情况,计算伤后3、7、12 d创面愈合率;伤后12 d,取创面及创缘皮肤组织行苏木精-伊红染色,观察新生上皮生长及炎症细胞浸润情况。对数据行单因素方差分析、重复测量方差分析、Mann-Whitney U检验、Bonferroni法。    结果   随着浸泡时间的延长,置于含过氧化氢PBS中的PVA-TSPBA微针逐渐溶解并于浸泡10 d完全降解,置于单纯PBS中的PVA-TSPBA微针仅发生溶胀而未溶解。培养24 h,5.0 g/L ε-PL组、10.0 g/L ε-PL组金黄色葡萄球菌未见生长,10.0 g/L ε-PL组大肠埃希菌未见生长;1.0 g/L ε-PL组、5.0 g/L ε-PL组、10.0 g/L ε-PL组金黄色葡萄球菌相对存活率较空白对照组明显降低(P<0.05或P<0.01),5.0 g/L ε-PL组、10.0 g/L ε-PL组大肠埃希菌相对存活率较空白对照组明显降低(P<0.01)。培养24 h,空白对照组、0 g/L ε-PL组、1.0 g/L ε-PL组、5.0 g/L ε-PL组、10.0 g/L ε-PL组细胞生长状态良好,组间细胞相对存活率相近(P>0.05)。PVA-TSPBA微针与PVA-TSPBA-SH微针的针体均呈四棱锥形,排列整齐,其中PVA-TSPBA-SH微针的针体更立体、棱角更分明。PVA-TSPBA-SH微针的临界力明显高于PVA-TSPBA微针(Z=3.317,P<0.01)。PVA-TSPBA-SH组小鼠按压完成后0 min微针穿透皮肤,10 min后针孔部分消失,20 min后针孔完全消失;PVA-TSPBA组微针未能穿透小鼠皮肤。培养24、48、72 h,5.0 g/L ε-PL+SH组细胞增殖活性均明显高于空白对照组(P<0.05或P<0.01)。无菌敷贴组小鼠创面愈合速度缓慢,渗出较多;0 g/L ε-PL+SH组小鼠创面愈合速度前期与无菌敷贴组相近,后期较无菌敷贴组加快,渗出中等;5.0 g/L ε-PL+SH组小鼠创面愈合较另2组快,渗出不多。5.0 g/L ε-PL+SH组小鼠伤后3、7、12 d创面愈合率分别为(40.6±4.2)%、(64.3±4.1)%、(95.8±2.4)%,明显高于无菌敷贴组的(20.4±2.7)%、(38.9±2.2)%、(59.1±6.2)%与0 g/L ε-PL+SH组的(21.6±2.6)%、(44.0±1.7)%、(82.2±5.3)%(P<0.01);0 g/L ε-PL+SH组小鼠伤后7、12 d创面愈合率明显高于无菌敷贴组(P<0.05或P<0.01)。伤后12 d,5.0 g/L ε-PL+SH组小鼠创面几乎完全上皮化且炎症细胞浸润较少,0 g/L ε-PL+SH组小鼠创面部分上皮化且伴大量炎症细胞浸润,无菌敷贴组小鼠创面未见明显上皮化且伴大量炎症细胞浸润。    结论   基于TSPBA、聚乙烯醇、ε-PL及SH制备的复合微针可顺利刺穿小鼠皮肤并能通过缓慢响应创面中的活性氧从而溶解释放抗菌物质,抑制创面细菌定植,促进糖尿病小鼠细菌定植全层皮肤缺损创面修复。

     

  • 参考文献(40)

    [1] WuYK,ChengNC,ChengCM.Biofilms in chronic wounds: pathogenesis and diagnosis[J].Trends Biotechnol,2019,37(5):505-517.DOI: 10.1016/j.tibtech.2018.10.011.
    [2] GriceEA,SnitkinES,YockeyLJ,et al.Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response[J].Proc Natl Acad Sci U S A,2010,107(33):14799-14804.DOI: 10.1073/pnas.1004204107.
    [3] NishikawaT,EdelsteinD,DuXL,et al.Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J].Nature,2000,404(6779):787-790.DOI: 10.1038/35008121.
    [4] FerrucciL,FabbriE.Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty[J].Nat Rev Cardiol,2018,15(9):505-522.DOI: 10.1038/s41569-018-0064-2.
    [5] OkinD,MedzhitovR.Evolution of inflammatory diseases[J].Curr Biol,2012,22(17):R733-740.DOI: 10.1016/j.cub.2012.07.029.
    [6] DuXL,MatsumuraT,EdelsteinD,et al.Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells[J].J Clin Invest,2003,112(7):1049-1057.DOI: 10.1172/JCI18127.
    [7] GerardC,RollinsBJ.Chemokines and disease[J].Nat Immunol,2001,2(2):108-115.DOI: 10.1038/84209.
    [8] FullertonJN,GilroyDW.Resolution of inflammation: a new therapeutic frontier[J].Nat Rev Drug Discov,2016,15(8):551-567.DOI: 10.1038/nrd.2016.39.
    [9] ChouhanD,DeyN,BhardwajN,et al.Emerging and innovative approaches for wound healing and skin regeneration: current status and advances[J].Biomaterials,2019,216:119267.DOI: 10.1016/j.biomaterials.2019.119267.
    [10] DuckworthPF,RowlandsRS,BarbourME,et al.A novel flow-system to establish experimental biofilms for modelling chronic wound infection and testing the efficacy of wound dressings[J].Microbiol Res,2018,215:141-147.DOI: 10.1016/j.micres.2018.07.009.
    [11] PrausnitzMR,GomaaY,LiW.Microneedle patch drug delivery in the gut[J].Nat Med,2019,25(10):1471-1472.DOI: 10.1038/s41591-019-0606-0.
    [12] LiW,TerryRN,TangJ,et al.Rapidly separable microneedle patch for the sustained release of a contraceptive[J].Nat Biomed Eng,2019,3(3):220-229.DOI: 10.1038/s41551-018-0337-4.
    [13] RamadonD,PermanaAD,CourtenayAJ,et al.Development, evaluation, and pharmacokinetic assessment of polymeric microarray patches for transdermal delivery of vancomycin hydrochloride[J].Mol Pharm,2020,17(9):3353-3368.DOI: 10.1021/acs.molpharmaceut.0c00431.
    [14] PermanaAD,MirM,UtomoE,et al.Bacterially sensitive nanoparticle-based dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin infection: a proof of concept study[J].Int J Pharm X,2020,2:100047.DOI: 10.1016/j.ijpx.2020.100047.
    [15] WangJQ,YeYQ,YuJR,et al. Core-shell microneedle gel for self-regulated insulin delivery[J].ACS Nano,2018,12(3):2466-2473.DOI: 10.1021/acsnano.7b08152.
    [16] ChenHH,ChengYH,TianJR,et al.Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes[J].Sci Adv,2020,6(20):eaba4311.DOI: 10.1126/sciadv.aba4311.
    [17] WolcottRD,RumbaughKP,JamesG,et al.Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window[J].J Wound Care,2010,19(8):320-328.DOI: 10.12968/jowc.2010.19.8.77709.
    [18] FuXB. Wound healing center establishment and new technology application in improving the wound healing quality in China [J/OL]. Burns Trauma, 2020, 8: tkaa038[2021-08-31].https://academic.oup.com/burnstrauma/article/doi/ 10.1093/burnst/tkaa038/5939901.DOI: 10.1093/burnst/tkaa038.
    [19] MetcalfDG,BowlerPG.Clinical impact of an anti-biofilm Hydrofiber dressing in hard-to-heal wounds previously managed with traditional antimicrobial products and systemic antibiotics[J/OL].Burns Trauma,2020,8:tkaa004[2021-08-31].https://academic.oup.com/burnstrauma/article/doi/ 10.1093/burnst/tkaa004/5780075.DOI: 10.1093/burnst/tkaa004.
    [20] PermanaAD,McCruddenMTC,DonnellyRF.Enhanced intradermal delivery of nanosuspensions of antifilariasis drugs using dissolving microneedles: a proof of concept study [J].Pharmaceutics,2019,11(7):346.DOI: 10.3390/pharmaceutics11070346.
    [21] WaghuleT,SinghviG,DubeySK,et al.Microneedles: a smart approach and increasing potential for transdermal drug delivery system[J].Biomed Pharmacother,2019,109:1249-1258.DOI: 10.1016/j.biopha.2018.10.078.
    [22] AliR,MehtaP,ArshadMS,et al.Transdermal microneedles-a materials perspective[J].AAPS PharmSciTech,2019,21(1):12.DOI: 10.1208/s12249-019-1560-3.
    [23] Haj-AhmadR,KhanH,ArshadMS,et al.Microneedle coating techniques for transdermal drug delivery[J].Pharmaceutics,2015,7(4):486-502.DOI: 10.3390/pharmaceutics7040486.
    [24] XenikakisI,TzimtzimisM,TsongasK,et al.Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro[J].Eur J Pharm Sci,2019,137:104976.DOI: 10.1016/j.ejps.2019.104976.
    [25] RacV,LevićS,BalančB,et al.PVA cryogel as model hydrogel for iontophoretic transdermal drug delivery investigations. Comparison with PAA/PVA and PAA/PVP interpenetrating networks[J].Colloids Surf B Biointerfaces,2019,180:441-448.DOI: 10.1016/j.colsurfb.2019.05.017.
    [26] StrehlC,GaberT,MauriziL,et al.Effects of PVA coated nanoparticles on human immune cells[J].Int J Nanomedicine,2015,10:3429-3445.DOI: 10.2147/IJN.S75936.
    [27] NafeaEH,Poole-WarrenLA,MartensPJ.Bioactivity of permselective PVA hydrogels with mixed ECM analogues[J].J Biomed Mater Res A,2015,103(12):3727-3735.DOI: 10.1002/jbm.a.35510.
    [28] ZhaoH,HuangJ,LiY,et al.ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J].Biomaterials,2020,258:120286.DOI: 10.1016/j.biomaterials.2020.120286.
    [29] HyldgaardM,MygindT,VadBS,et al.The antimicrobial mechanism of action of epsilon-poly-l-lysine[J].Appl Environ Microbiol,2014,80(24):7758-7770.DOI: 10.1128/AEM.02204-14.
    [30] SantiniMT,CamettiC,IndovinaPL,et al.Polylysine induces changes in membrane electrical properties of K562 cells[J].J Biomed Mater Res,1997,35(2):165-174.DOI: 10.1002/(sici)1097-4636(199705)35:2<165::aid-jbm4>3.0.co;2-l.
    [31] NiethammerP,GrabherC,LookAT,et al.A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish[J].Nature,2009,459(7249):996-999.DOI: 10.1038/nature08119.
    [32] HecquetCM,AhmmedGU,VogelSM,et al.Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability[J].Circ Res,2008,102(3):347-355.DOI: 10.1161/CIRCRESAHA.107.160176.
    [33] HuangLY,SzewczykG,SarnaT,et al.Potassium iodide potentiates broad-spectrum antimicrobial photodynamic inactivation using photofrin[J].ACS Infect Dis,2017,3(4):320-328.DOI: 10.1021/acsinfecdis.7b00004.
    [34] PeroglioM,GradS,MortisenD,et al.Injectable thermoreversible hyaluronan-based hydrogels for nucleus pulposus cell encapsulation[J].Eur Spine J,2012,21Suppl 6(Suppl 6):S839-849.DOI: 10.1007/s00586-011-1976-2.
    [35] Loureiro BorghettiR,de VargasKF,Pozatti MoureS,et al.Clinical and histologic evaluation of effects of hyaluronic acid in rat tongue[J].Oral Surg Oral Med Oral Pathol Oral Radiol,2012,113(4):488-494.DOI: 10.1016/j.tripleo.2011.04.023.
    [36] LiuS,JinMN,QuanYS,et al.Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin[J].Eur J Pharm Biopharm,2014,86(2):267-276.DOI: 10.1016/j.ejpb.2013.10.001.
    [37] MatsuoK,HirobeS,YokotaY,et al.Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza[J].J Control Release,2012,160(3):495-501.DOI: 10.1016/j.jconrel.2012.04.001.
    [38] LiuS,JinMN,QuanYS,et al.The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin[J].J Control Release,2012,161(3):933-941.DOI: 10.1016/j.jconrel.2012.05.030.
    [39] KatsumiH,LiuS,TanakaY,et al.Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats[J].J Pharm Sci,2012,101(9):3230-3238.DOI: 10.1002/jps.23136.
    [40] MönkäreJ,Reza NejadnikM,BaccoucheK,et al.IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery[J].J Control Release,2015,218:53-62.DOI: 10.1016/j.jconrel.2015.10.002.
  • 1  聚乙烯醇-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺微针在2种磷酸盐缓冲液(PBS)中的溶解情况 图中标尺为1 mm。1A、1B、1C、1D.分别为于单纯PBS中浸泡0、3、7、10 d微针形态,浸泡0 d时微针沉入底部,浸泡3、7、10 d微针逐渐溶胀但未溶解;1E、1F、1G、1H.分别为于含终物质的量浓度0.25 mmol/L过氧化氢的PBS中浸泡0、3、7、10 d微针形态,浸泡0 d时与图1A相近,浸泡3、7 d逐渐溶解,浸泡10 d完全溶解

    2  5组金黄色葡萄球菌、大肠埃希菌培养24 h在LB琼脂培养板上的生长情况 图中标尺为1 cm。2A、2B、2C、2D、2E.分别为空白对照组、0 g/L ε-PL组、1.0 g/L ε-PL组、5.0 g/L ε-PL组、10.0 g/L ε-PL组金黄色葡萄球菌生长情况,图2A中菌落较多,图2B中菌落数与图2A相近,图2C中菌落数少于图2A,图2D、2E未见细菌生长;2F、2G、2H、2I、2J.分别为空白对照组、0 g/L ε-PL组、1.0 g/L ε-PL组、5.0 g/L ε-PL组、10.0 g/L ε-PL组大肠埃希菌生长情况,图2F中菌落较多,图2G中菌落数与图2F相近,图2H中菌落数略少于图2F,图2I中菌落数明显少于图2F,图2J未见细菌生长

    注:各ε-聚赖氨酸(ε-PL)组细菌与含相应浓度ε-PL的聚乙烯醇-ε-PL-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺微针共培养

    3  小鼠成纤维细胞系3T3细胞培养24 h的生长情况 光学显微镜×200,图中标尺为100 μm。3A、3B、3C、3D、3E.分别为空白对照组、0 g/L ε-PL组、1.0 g/L ε-PL组、5.0 g/L ε-PL组、10.0 g/L ε-PL组,各组细胞均正常增殖,细胞生长状态良好,细胞排列有序,形态均一

    注:各ε-聚赖氨酸(ε-PL)组细胞用含相应浓度ε-PL的聚乙烯醇-ε-PL-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺微针浸提液培养

    4  2种活性氧响应性微针形态学观察。4A.聚乙烯醇-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺(PVA-TSPBA)微针排列整齐,针体为四棱锥形,但呈空心状 图中标尺为400 µm;4B.PVA-TSPBA微针针尖不够锐利,针体呈空心状 光学显微镜×200,图中标尺为100 µm;4C.PVA-TSPBA-透明质酸钠(SH)微针排列整齐,针体为四棱锥形且针体饱满 图中标尺为400 µm;4D.PVA-TSPBA-SH微针针尖锐利,针体饱满 光学显微镜×200,图中标尺为100 µm

    5  2组小鼠皮肤上按压相应活性氧响应性微针1 min后各时间点皮肤情况 图中标尺为1 mm。5A、5B、5C.分别为聚乙烯醇-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺(PVA-TSPBA)-透明质酸钠组按压完成后0(即刻)、10、20 min,0 min针孔清晰可见,10 min时部分皮肤已恢复正常但部分皮肤仍留有针孔,20 min时针孔完全消失;5D.PVA-TSPBA组按压完成后0 min,未见明显针孔

    6  3组糖尿病小鼠细菌定植全层皮肤缺损创面伤后各时间点愈合情况 图中标尺为2 mm。6A、6B、6C、6D.分别为无菌敷贴组伤后0、3、7、12 d创面情况,愈合速度缓慢,伤后12 d仍有大部分创面未愈合;6E、6F、6G、6H.分别为0 g/L ε-PL+SH组伤后0、3、7、12 d创面情况,前1周内愈合速度较缓慢,图6E除表面覆盖微针外与图6A基本一致,图6F创面面积与图6B相近,图6G创面面积与图6C相近,图6H创面面积较图6D缩小;6I、6J、6K、6L.分别为5.0 g/L ε-PL+SH组伤后0、3、7、12 d创面情况,愈合较快,图6I与图6E基本一致,图6J创面面积较图6B、6F明显缩小,图6K创面面积较图6C与图6G明显缩小,图6L创面已基本愈合

    注:0 g/L ε-聚赖氨酸(ε-PL)+透明质酸钠(SH)组、5.0 g/L ε-PL+SH组创面覆盖含相应浓度ε-PL的聚乙烯醇-ε-PL-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺-SH微针

    7  3组糖尿病小鼠细菌定植全层皮肤缺损创面伤后12 d组织学观察 苏木精-伊红×40,图中标尺为50 μm。7A.无菌敷贴组创面未见明显上皮化,有大量炎症细胞(蓝紫色)浸润;7B.0 g/L ε-PL+SH组创面部分上皮化,有大量炎症细胞浸润;7C.5.0 g/L ε-PL+SH组创面几乎完全上皮化且炎症细胞浸润较少

    注:黑色双向箭头示未上皮化区域;0 g/L ε-聚赖氨酸(ε-PL)+透明质酸钠(SH)组、5.0 g/L ε-PL+SH组创面覆盖含相应浓度ε-PL的聚乙烯醇-ε-PL-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺-SH微针

    表1  4组小鼠成纤维细胞系3T3细胞培养各时间点相对存活率比较(%,x¯±s

    组别样本数24 h48 h72 h
    空白对照组6100±11130±17204±14
    0 g/L ε-PL组6134±17135±15216±14
    单纯5.0 g/L ε-PL组6138±16128±18218±8
    5.0 g/L ε-PL+SH组6140±14a155±14b239±12b
    注:0 g/L ε-聚赖氨酸(ε-PL)组、单纯5.0 g/L ε-PL组分别用含相应浓度ε-PL的聚乙烯醇-ε-PL-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺(PVA-ε-PL-TSPBA)微针浸提液培养,最后一组用含5.0 g/L ε-PL的PVA-ε-PL-TSPBA-透明质酸钠(SH)微针浸提液培养;处理因素主效应,F=183.357,P<0.001;时间因素主效应,F=235.311,P<0.001;两者交互作用,F=0.593,P=0.702;与空白对照组比较,aP<0.01,bP<0.05
    下载: 导出CSV

    表2  3组糖尿病小鼠细菌定植全层皮肤缺损创面伤后各时间点愈合率比较(%,x¯±s

    组别鼠数(只)伤后3 d伤后7 d伤后12 d
    无菌敷贴组620.4±2.738.9±2.259.1±6.2
    0 g/L ε-PL+SH组621.6±2.644.0±1.7c82.2±5.3a
    5.0 g/L ε-PL+SH组640.6±4.2ab64.3±4.1ab95.8±2.4ab
    注:0 g/L ε-聚赖氨酸(ε-PL)+透明质酸钠(SH)组、5.0 g/L ε-PL+SH组创面覆盖含相应浓度ε-PL的聚乙烯醇-ε-PL-N1-(4-溴苄基)-N3-(4-溴苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二胺-SH微针;处理因素主效应,F=711.051,P<0.001;时间因素主效应,F=717.622,P<0.001;两者交互作用,F=13.481,P<0.001;与无菌敷贴组比较,aP<0.01,cP<0.05;与0 g/L ε-PL+SH组比较,bP<0.01
    下载: 导出CSV
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2682
  • HTML全文浏览量:  124
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31

目录

    /

    返回文章
    返回