-
摘要: 皮肤创面是临床常见病症之一。功能材料通过结构调节和性能整合,可以针对性地对创面进行保护并促进创面愈合,目前已在创面修复领域得到广泛应用,是临床创面治疗的重要工具之一。本文分别就止血类、抗菌类、抗炎类、促血管化类及调控创面微环境类功能材料在创面修复中的应用做一总结。Abstract: Cutaneous wound is one of the common clinical diseases. Functional materials can provide targeted wound protection and promote wound healing through the structural adjustment and functional integration. Currently, functional materials have been widely used in the field of wound repair, becoming one of the important tools for clinical wound treatment. This paper summarizes the application of functional materials of following categories including hemostasis, antibacterial, anti-inflammation, vascularization, and regulation of wound microenvironment in wound repair.
-
Key words:
- Skin /
- Wound healing /
- Functional materials /
- Wound microenvironment
-
参考文献
(37) [1] World Health Organization Burns 2018-03-06 2021-09-08 https://www.who.int/en/news-room/fact-sheets/detail/burns World Health Organization. Burns [EB/OL].(2018-03-06)[2021-09-08]. https://www.who.int/en/news-room/fact-sheets/detail/burns.
[2] ChengB,JiangY,FuX,et al.Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: prevention and control[J].Wound Repair Regen,2020,28(5):623-630.DOI: 10.1111/wrr.12825. [3] ArmatoU,FreddiG.Editorial: biomaterials for skin wound repair: tissue engineering, guided regeneration, and wound scarring prevention[J].Front Bioeng Biotechnol,2021,9:722327.DOI: 10.3389/fbioe.2021.722327. [4] ZhangX,ShuW,YuQ,et al.Functional biomaterials for treatment of chronic wound[J].Front Bioeng Biotechnol,2020,8:516.DOI: 10.3389/fbioe.2020.00516. [5] ChenG,YuY,WuX,et al.Wound healing: bioinspired multifunctional hybrid hydrogel promotes wound healing[J/OL]. Adv Funct Mater,2021,28(33):1870233[2021-09-30]. https://doi.org/10.1002/adfm.202105749. doi: 10.1002/adfm.202105749 [6] TengL,ShaoZW,BaiQ,et al.Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing[J/OL].Adv Funct Mater,2021,31(43):2105628[2021-09-30].https://doi.org/10.1002/adfm.202105628. doi: 10.1002/adfm.202105628 [7] GuoY,WangY,ZhaoX,et al.Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light[J].Sci Adv,2021,7(29):eabf9635.DOI: 10.1126/sciadv.abf9635. [8] BroughtonG,JanisJE,AttingerCE.A brief history of wound care[J].Plast Reconstr Surg,2006,117(Suppl 7):S6-11.DOI: 10.1097/01.prs.0000225429.76355.dd. [9] LiuM,LuoG,WangY,et al.Optimization and integration of nanosilver on polycaprolactone nanofibrous mesh for bacterial inhibition and wound healing in vitro and in vivo[J].Int J Nanomedicine,2017,12:6827-6840.DOI: 10.2147/IJN.S140648. [10] LiuM,LiuT,ChenX,et al.Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing[J].J Nanobiotechnology,2018,16(1):89.DOI: 10.1186/s12951-018-0416-4. [11] LiuM,HeD,YangT,et al.An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy[J].J Nanobiotechnology,2018,16(1):23.DOI: 10.1186/s12951-018-0348-z. [12] PengLH,HuangYF,ZhangCZ,et al.Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity[J].Biomaterials,2016,103:137-149.DOI: 10.1016/j.biomaterials.2016.06.057. [13] LiuM,LiuT,ZhangX,et al.Fabrication of KR-12 peptide- containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization[J].Int J Nanomedicine,2019,14:3345-3360.DOI: 10.2147/IJN.S199618. [14] WangR,LiJ ,ChenW, et al. A biomimetic mussel‐inspired ε‐poly‐L‐lysine hydrogel with robust tissue‐anchor and anti‐infection capacity [J]. Advanced Functional Materials,2017,27(8):1604894. DOI: 10.1002/adfm.201604894. [15] LiuT,LiuY,LiuM,et al.Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing[J/OL].Burns Trauma,2018,6:16[2021-09-30].https://pubmed.ncbi.nlm.nih.gov/29796394/.DOI: 10.1186/s41038-018-0115-2. [16] YangY,DongZ,LiM,et al.Graphene oxide/copper nanoderivatives-modified chitosan/hyaluronic acid dressings for facilitating wound healing in infected full-thickness skin defects[J].Int J Nanomedicine,2020,15:8231-8247.DOI: 10.2147/IJN.S278631. [17] QianW,YanC,HeD,et al.pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection[J].Acta Biomater,2018,69:256-264.DOI: 10.1016/j.actbio.2018.01.022. [18] GanD,XuT,XingW,et al.Mussel-inspired contact-active antibacterial hydrogel with high cell affinity, toughness, and recoverability[J/OL].Nat Commun,2019,29(1): 1805964 [2021-09-30].https://onlinelibrary.wiley.com/doi/10.1002/adfm. 201805964. doi: 10.1002/adfm. 201805964 [19] BoomiP,GanesanR,Prabu PooraniG,et al.Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions[J].Int J Nanomedicine,2020,15:7553-7568.DOI: 10.2147/IJN.S257499. [20] OrlowskiP,ZmigrodzkaM,TomaszewskaE,et al.Tannic acid-modified silver nanoparticles for wound healing: the importance of size[J].Int J Nanomedicine,2018,13:991-1007.DOI: 10.2147/IJN.S154797. [21] WilkinsonHN,HardmanMJ.Wound healing: cellular mechanisms and pathological outcomes[J].Open Biol,2020,10(9):200223.DOI: 10.1098/rsob.200223. [22] NamaziMR, FallahzadehMK, SchwartzRA. Strategies for prevention of scars: what can we learn from fetal skin?[J]. Int J Dermatol,2011,50(1):85-93.DOI: 10.1111/j.1365-4632.2010.04678.x. [23] LiuT,XiaoB,XiangF,et al.Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases[J].Nat Commun, 2020,11(1):2788.DOI: 10.1038/s41467-020-16544-7. [24] OuQ,ZhangS,FuC,et al.More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing[J].J Nanobiotechnology,2021,19(1):237.DOI: 10.1186/s12951-021-00973-7. [25] WangS,YanC,ZhangX,et al.Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing[J].Biomater Sci,2018,6(10):2757-2772.DOI: 10.1039/c8bm00807h. [26] LuY,LiH,WangJ,et al.Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing[J/OL]. Adv Funct Mater,2021:2105749[2021-09-30]. https://doi.org/10.1002/adfm.202105749.[published online ahead of print September 1, 2021]. doi: 10.1002/adfm.202105749 [27] LiY,XuT,TuZ,et al.Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair[J].Theranostics,2020,10(11):4929-4943.DOI: 10.7150/thno.41839. [28] ThomasHM,AhangarP,FitridgeR,et al.Plasma-polymerized pericyte patches improve healing of murine wounds through increased angiogenesis and reduced inflammation[J].Regen Biomater,2021,8(4):rbab024.DOI: 10.1093/rb/rbab024. [29] WinterGD.Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig[J].Nature,1962,193:293-294.DOI: 10.1038/193293a0. [30] HarriesRL,BosanquetDC,HardingKG.Wound bed preparation: TIME for an update[J].Int Wound J,2016,13(Suppl 3):S8-14.DOI: 10.1111/iwj.12662. [31] XuR,LuoG,XiaH,et al.Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction[J].Biomaterials,2015,40:1- 11.DOI: 10.1016/j.biomaterials.2014.10.077. [32] IacobAT,DrăganM,IonescuOM,et al.An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management[J].Pharmaceutics,2020,12(10):983. DOI: 10.3390/pharmaceutics12100983. [33] RazzaqA,KhanZU,SaeedA,et al.Development of cephradine- loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: in-vitro and in-vivo assessments[J].Pharmaceutics,2021,13(3):349. DOI: 10.3390/pharmaceutics13030349. [34] LeiH,ZhuC,FanD.Optimization of human-like collagen composite polysaccharide hydrogel dressing preparation using response surface for burn repair[J].Carbohydr Polym,2020,239:116249.DOI: 10.1016/j.carbpol.2020.116249. [35] Stone IiR,NatesanS,KowalczewskiCJ,et al.Advancements in regenerative strategies through the continuum of burn care[J].Front Pharmacol,2018,9:672.DOI: 10.3389/fphar.2018.00672. [36] CentanniJM,StraseskiJA,WicksA,et al.StrataGraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: results from a prospective, randomized, controlled dose escalation trial[J].Ann Surg,2011,253(4):672-683.DOI: 10.1097/SLA.0b013e318210f3bd. [37] Sheryl R Stratatech corporation biologics license application (Approval Letter) 2021-06-05 2021-09-30 https://www.FDA.Gov/media/150131/download SherylR. Stratatech corporation biologics license application (Approval Letter)[EB/OL]. (2021-06-05)[2021-09-30]. https://www.FDA.Gov/media/150131/download.
-
脱细胞真皮基质(ADM) 重症监护病房(ICU) 动脉血氧分压(PaO2) 丙氨酸转氨酶(ALT) 白细胞介素(IL) 磷酸盐缓冲液(PBS) 急性呼吸窘迫综合征(ARDS) 角质形成细胞(KC) 反转录-聚合酶链反应(RT-PCR) 天冬氨酸转氨酶(AST) 半数致死烧伤面积(LA50) 全身炎症反应综合征(SIRS) 集落形成单位(CFU) 内毒素/脂多糖(LPS) 超氧化物歧化酶(SOD) 细胞外基质(ECM) 丝裂原活化蛋白激酶(MAPK) 动脉血氧饱和度(SaO2) 表皮生长因子(EGF) 最低抑菌浓度(MIC) 体表总面积(TBSA) 酶联免疫吸附测定(ELISA) 多器官功能障碍综合征(MODS) 转化生长因子(TGF) 成纤维细胞(Fb) 多器官功能衰竭(MOF) 辅助性T淋巴细胞(Th) 成纤维细胞生长因子(FGF) 一氧化氮合酶(NOS) 肿瘤坏死因子(TNF) 3-磷酸甘油醛脱氢酶(GAPDH) 负压伤口疗法(NPWT) 血管内皮生长因子(VEGF) 苏木精-伊红(HE) 动脉血二氧化碳分压(PaCO2) 负压封闭引流(VSD)
表(1)
计量
- 文章访问数: 506
- HTML全文浏览量: 121
- PDF下载量: 111
- 被引次数: 0