留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人脂肪间充质干细胞来源外泌体对脓毒症小鼠肺血管内皮细胞损伤的影响及其机制

蔡维霞 沈括 曹涛 王璟 赵明 王克甲 张月 韩军涛 胡大海 陶克

蔡维霞, 沈括, 曹涛, 等. 人脂肪间充质干细胞来源外泌体对脓毒症小鼠肺血管内皮细胞损伤的影响及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(3): 266-275. DOI: 10.3760/cma.j.cn501120-20211020-00362.
引用本文: 蔡维霞, 沈括, 曹涛, 等. 人脂肪间充质干细胞来源外泌体对脓毒症小鼠肺血管内皮细胞损伤的影响及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(3): 266-275. DOI: 10.3760/cma.j.cn501120-20211020-00362.
Cai WX,Shen K,Cao T,et al.Effects of exosomes from human adipose-derived mesenchymal stem cells on pulmonary vascular endothelial cells injury in septic mice and its mechanism[J].Chin J Burns Wounds,2022,38(3):266-275.DOI: 10.3760/cma.j.cn501120-20211020-00362.
Citation: Cai WX,Shen K,Cao T,et al.Effects of exosomes from human adipose-derived mesenchymal stem cells on pulmonary vascular endothelial cells injury in septic mice and its mechanism[J].Chin J Burns Wounds,2022,38(3):266-275.DOI: 10.3760/cma.j.cn501120-20211020-00362.

人脂肪间充质干细胞来源外泌体对脓毒症小鼠肺血管内皮细胞损伤的影响及其机制

doi: 10.3760/cma.j.cn501120-20211020-00362
基金项目: 

国家自然科学基金青年科学基金项目 81601680

详细信息
    通讯作者:

    陶克,Email:taoke918@fmmu.edu.cn

Effects of exosomes from human adipose-derived mesenchymal stem cells on pulmonary vascular endothelial cells injury in septic mice and its mechanism

Funds: 

Youth Science Foundation Project of National Natural Science Foundation of China 81601680

More Information
    Corresponding author: Tao Ke, Email: taoke918@fmmu.edu.cn
  • 摘要:   目的  探讨人脂肪间充质干细胞(ADSC)来源外泌体对脓毒症小鼠肺血管内皮细胞(PMVEC)损伤的影响及其机制。  方法  采用实验研究方法。取空军军医大学第一附属医院收治的3例行腹部手术切除患者(均为女性,年龄10~25岁)遗弃的新鲜脂肪组织进行原代人ADSC的分离培养,于第5天采用倒置相差显微镜观察细胞形态。取第3代ADSC,采用流式细胞术检测ADSC中CD29、CD34、CD44、CD45、CD73和CD90的表达情况。选取第3~5代ADSC,采用差速超高速离心法获取其上清液中的外泌体,采用透射电镜和纳米颗粒跟踪分析法及蛋白质印迹法分别检测外泌体形状、粒径大小及CD9、CD63、肿瘤易感基因101(TSG101)和β肌动蛋白的蛋白表达。取24只成年雄性BALB/c小鼠,按照随机数字表法(分组方法下同)分成正常对照组、单纯盲肠结扎穿孔(CLP)组和CLP+ADSC外泌体组,每组8只,分别进行相应处理。术后24 h,采用酶联免疫吸附测定法检测小鼠血清中肿瘤坏死因子α(TNF-α)和白细胞介素1β(IL-1β)水平,采用苏木精-伊红染色和髓过氧化物酶染色检测小鼠肺组织形态,采用免疫荧光法检测小鼠肺组织细胞中8-羟基脱氧鸟苷(8-OHdG)的表达。取1个月龄雌雄不拘C57小鼠,采用组织块法获取原代PMVEC。取第3代PMVEC,采用免疫荧光法和流式细胞术检测PMVEC中CD31的表达。取第3代PMVEC,与ADSC来源外泌体共培养12 h,采用PKH26试剂盒检测PMVEC吞噬外泌体的情况。取第3代PMVEC,将细胞分为空白对照组、单纯巨噬细胞上清液组和巨噬细胞上清液+ADSC外泌体组,每组3孔,分别进行相应处理。24 h后,采用流式细胞术检测细胞中活性氧含量,采用免疫荧光法检测细胞中8-OHdG表达,采用Transwell实验测定细胞单分子层通透性。以上样本数均为3。对数据行单因素方差分析和LSD-t检验。  结果  分离的原代ADSC培养至第5天,呈梭形密集生长,呈典型的漩涡样排列。第3代ADSC中CD29、CD44、CD73和CD90阳性细胞百分比均>90%,CD34和CD45阳性细胞百分比均<5%。第3~5代ADSC来源外泌体呈典型的双凹盘状结构,外泌体平均粒径为103 nm,外泌体中CD9、CD63和TSG101的蛋白表达均呈阳性,β肌动蛋白的蛋白表达呈阴性。术后24 h,与正常对照组比较,单纯CLP组小鼠血清中TNF-α和IL-1β的含量均明显增加(t值分别为28.76、29.69,P<0.01);与单纯CLP组比较,CLP+ADSC外泌体组小鼠血清中TNF-α和IL-1β的含量均明显降低(t值分别为9.90、4.76,P<0.05或P<0.01)。术后24 h,正常对照组小鼠肺组织结构清晰完整、无炎症细胞浸润,单纯CLP组小鼠的肺组织较正常对照组水肿明显、炎症细胞浸润现象明显,CLP+ADSC外泌体组小鼠肺组织较单纯CLP组水肿症状明显减轻、炎症细胞浸润明显减少。术后24 h,3组小鼠肺组织中CD31呈阳性表达;单纯CLP组小鼠肺组织中8-OHdG阳性细胞荧光强度较正常对照组显著增大,CLP+ADSC外泌体组小鼠肺组织中8-OHdG阳性细胞荧光强度较单纯CLP组明显下降。第3代PMVEC的免疫荧光结果显示CD31呈阳性表达,流式细胞术鉴定结果显示CD31阳性细胞占比为99.5%。共培养12 h,ADSC来源外泌体成功被PMVEC吞噬,进入胞质。第3代PMVEC培养24 h后,与空白对照组比较,单纯巨噬细胞上清液组PMVEC的活性氧荧光强度明显增加(t=15.73,P<0.01);与单纯巨噬细胞上清液组比较,巨噬细胞上清液+ADSC外泌体组PMVEC的活性氧荧光强度明显降低(t=4.72,P<0.01)。第3代PMVEC培养24 h,与空白对照组相比,单纯巨噬细胞上清液组PMVEC的8-OHdG阳性荧光强度明显增强,巨噬细胞上清液+ADSC外泌体组PMVEC的8-OHdG阳性荧光强度介于空白对照组和单纯巨噬细胞上清液组之间。第3代PMVEC培养24 h,与空白对照组比较,单纯巨噬细胞上清液组的PMVEC单分子层细胞通透性明显增加(t=6.34,P<0.01);与单纯巨噬细胞上清液组比较,巨噬细胞上清+ADSC外泌体组的PMVEC单分子层细胞通透性明显降低(t=2.93,P<0.05)。  结论  ADSC来源外泌体可改善小鼠肺组织氧化性损伤,降低由巨噬细胞上清液诱导的PMVEC的活性氧含量、8-OHdG表达以及细胞通透性。

     

  • 参考文献(41)

    [1] RuddKE, JohnsonSC, AgesaKM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395 (10219):200-211.DOI: 10.1016/S0140-6736(19)32989-7.
    [2] YoungP,MackleD,BellomoR,et al.Conservative oxygen therapy for mechanically ventilated adults with sepsis: a post hoc analysis of data from the intensive care unit randomized trial comparing two approaches to oxygen therapy (ICU-ROX)[J].Intensive Care Med,2020,46(1):17-26.DOI: 10.1007/s00134-019-05857-x.
    [3] StanskiNL,WongHR.Prognostic and predictive enrichment in sepsis[J].Nat Rev Nephrol,2020,16(1):20-31.DOI: 10.1038/s41581-019-0199-3.
    [4] KomorowskiM.Clinical management of sepsis can be improved by artificial intelligence: yes[J].Intensive Care Med,2020,46(2):375-377.DOI: 10.1007/s00134-019-05898-2.
    [5] 黎鳌.黎鳌烧伤学[M].上海:上海科学技术出版社,2001.
    [6] 黄巧冰.内皮细胞屏障与烧伤后血管通透性的关系及机制[J].中华烧伤杂志,2007,23(5):324-326.DOI: 10.3760/cma.j.issn.1009-2587.2007.05.002.
    [7] ManiatisNA, KotanidouA, CatravasJD, et al. Endothelial pathomechanisms in acute lung injury[J].Vascul Pharmacol,2008,49(4/6):119-133.DOI: 10.1016/j.vph.2008.06.009.
    [8] DelanoMJ,WardPA.Sepsis-induced immune dysfunction:can immune therapies reduce mortality?[J].J Clin Invest,2016,126(1):23-31.DOI: 10.1172/JCI82224.
    [9] DouglasSD.Monocyte and macrophage reactions[J].Environ Health Perspect,1974,9:281-282.DOI: 10.1289/ehp.749281.
    [10] 邹宪宝,李新宇.脓毒症致肺血管内皮细胞损伤机制的研究进展[J].现代生物医学进展,2009,9(22):4384-4386.
    [11] 吴丽丽,梁群,曹雪丹.中医药保护脓毒症肺血管内皮细胞损伤的机制研究进展[J].中国中医急症,2021,30(1):172-175.DOI: 10.3969/j.issn.1004-745X.2021.01.050.
    [12] 柴云飞,雷黎明,李鹏,等.血管内皮细胞损伤与脓毒症休克的相关性[J].实用医学杂志,2017,33(15):2529-2532.DOI: 10.3969/j.issn.1006-5725.2017.15.027.
    [13] PuCM,LiuCW,LiangCJ,et al.Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via IL-6 expression[J].J Invest Dermatol,2017,137(6):1353-1362.DOI: 10.1016/j.jid.2016.12.030.
    [14] JoffreJ,HellmanJ,InceC,et al.Endothelial responses in sepsis[J].Am J Respir Crit Care Med,2020,202(3):361-370.DOI: 10.1164/rccm.201910-1911TR.
    [15] ColbertJF,SchmidtEP.Endothelial and microcirculatory function and dysfunction in sepsis[J].Clin Chest Med,2016,37(2):263-275.DOI: 10.1016/j.ccm.2016.01.009.
    [16] HamidzadehK,ChristensenSM,DalbyE,et al.Macrophages and the recovery from acute and chronic inflammation[J].Annu Rev Physiol,2017,79:567-592.DOI: 10.1146/annurev-physiol-022516-034348.
    [17] YangC,LuoL,BaiX,et al.Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J].Arch Biochem Biophys,2020,681:108259.DOI: 10.1016/j.abb.2020.108259.
    [18] ZhangW,BaiX,ZhaoB,et al.Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J].Exp Cell Res,2018,370(2):333-342.DOI: 10.1016/j.yexcr.2018.06.035.
    [19] WeiP,ZhongC,YangX,et al.Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function[J/OL].Burns Trauma,2020,8:tkaa020[2022-03-01]. https://pubmed.ncbi.nlm.nih.gov/329234 90/.DOI: 10.1093/burnst/tkaa020.
    [20] HuP,YangQ,WangQ,et al.Mesenchymal stromal cells- exosomes:a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J/OL].Burns Trauma,2019,7:38[2022-03-02]. https://pubmed.ncbi.nlm.nih.gov/31890717/.DOI: 10.1186/s41038-019-0178-8.
    [21] HwangI,JoK,ShinKC,et al.GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity[J].Proc Natl Acad Sci U S A,2019,116(24):11936-11945.DOI: 10.1073/pnas.1822067116.
    [22] DominguesCC,KunduN,KropotovaY,et al.Antioxidant- upregulated mesenchymal stem cells reduce inflammation and improve fatty liver disease in diet-induced obesity[J].Stem Cell Res Ther,2019,10(1):280.DOI: 10.1186/s13287-019-1393-8.
    [23] XieJ,JonesTJ,FengD,et al.Human adipose-derived stem cells suppress elastase-induced murine abdominal aortic inflammation and aneurysm expansion through paracrine factors[J].Cell Transplant,2017,26(2):173-189.DOI: 10.3727/096368916X692212.
    [24] TianM,TicerT,WangQ,et al.Adipose-derived biogenic nanoparticles for suppression of inflammation[J].Small,2020,16(10):e1904064.DOI: 10.1002/smll.201904064.
    [25] HongP, YangH, WuY, et al. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review[J]. Stem Cell Res Ther,2019,10(1):242.DOI: 10.1186/s13287-019-1358-y.
    [26] 沈括, 王许杰, 刘开拓, 等. 人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤与创面修复杂志, 2022, 38(3): 215-226. DOI: 10.3760/cma.j.cn501120-20201116-00477.
    [27] RittirschD,Huber-LangMS,FlierlMA,et al.Immunodesign of experimental sepsis by cecal ligation and puncture[J].Nat Protoc,2009,4(1):31-36.DOI: 10.1038/nprot.2008.214.
    [28] 胡国栋,陈英华,刘爱华,等.一种改良的肺微血管内皮细胞培养方法[J].南方医科大学学报,2012,32(8):1151-1153.DOI: 10.3969/j.issn.1673-4254.2012.08.17.
    [29] QiuP,LiuY,ZhangJ.Review: the role and mechanisms of macrophage autophagy in sepsis[J].Inflammation,2019,42(1):6-19.DOI: 10.1007/s10753-018-0890-8.
    [30] VenetF,MonneretG.Advances in the understanding and treatment of sepsis-induced immunosuppression[J].Nat Rev Nephrol,2018,14(2):121-137.DOI: 10.1038/nrneph.2017.165.
    [31] GottsJE,MatthayMA.Sepsis: pathophysiology and clinical management[J].BMJ,2016,353:i1585.DOI: 10.1136/bmj.i1585.
    [32] MarshallJC.Sepsis definitions: a work in progress[J].Crit Care Clin,2018,34(1):1-14.DOI: 10.1016/j.ccc.2017.08.004.
    [33] FeehanKT,GilroyDW.Is resolution the end of inflammation?[J].Trends Mol Med,2019,25(3):198-214.DOI: 10.1016/j.molmed.2019.01.006.
    [34] JooHJ,KimJH,HongSJ.Adipose tissue-derived stem cells for myocardial regeneration[J].Korean Circ J,2017,47(2):151-159.DOI: 10.4070/kcj.2016.0207.
    [35] GlassGE,FerrettiP.Adipose-derived stem cells in aesthetic surgery[J].Aesthet Surg J,2019,39(4):423-438.DOI: 10.1093/asj/sjy160.
    [36] Moreno-ManzanoV,Mellado-LópezM,Morera-EsteveMJ,et al.Human adipose-derived mesenchymal stem cells accelerate decellularized neobladder regeneration[J].Regen Biomater,2020,7(2):161-169.DOI: 10.1093/rb/rbz049.
    [37] BandeiraF,GohTW,SetiawanM,et al.Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors[J].Stem Cell Res Ther,2020,11(1):14.DOI: 10.1186/s13287-019-1533-1.
    [38] GuoJ,HuH,GoreckaJ,et al.Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells[J].Am J Physiol Cell Physiol,2018,315(6):C885-C896.DOI: 10.1152/ajpcell.00120.2018.
    [39] LaiTC,LeeTL,ChangYC,et al.MicroRNA-221/222 mediates ADSC-exosome-induced cardioprotection against ischemia/reperfusion by targeting PUMA and ETS-1[J].Front Cell Dev Biol,2020,8:569150.DOI: 10.3389/fcell.2020.569150.
    [40] ShenK,JiaY,WangX,et al.Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages[J].Free Radic Biol Med,2021,165:54-66.DOI: 10.1016/j.freeradbiomed.2021.01.023.
    [41] ShiY, WangY, LiQ, et al.Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases [J]. Nat Rev Nephrol, 2018, 14(8): 493-507.DOI: 10.1038/s41581-018-0023-5.
  • 1  术后24 h 3组脓毒症小鼠肺组织情况 1A、1B、1C:苏木精-伊红×20,图中标尺为100 μm;1D、1E、1F:髓过氧化物酶×20,图中标尺为100 μm。1A.正常对照组小鼠肺组织清晰完整;1B.单纯盲肠结扎穿孔(CLP)组小鼠肺组织较图1A水肿明显,炎症细胞浸润明显增加,细胞坏死明显增多;1C.CLP+脂肪间充质干细胞(ADSC)外泌体组小鼠肺组织水肿症状较图1B明显减轻,炎症细胞和红细胞浸润明显减少,细胞坏死情况明显改善;1D.正常对照组小鼠肺组织无炎症细胞浸润,肺间质较薄;1E.单纯CLP组小鼠肺组织炎症细胞浸润较图1D明显增加;1F.CLP+ADSC外泌体组小鼠肺组织炎症细胞和红细胞浸润较图1E明显减少

    2  术后24 h 3组脓毒症小鼠的肺组织中CD31和8-羟基脱氧鸟苷(8-OHdG)荧光共染检测其氧化性损伤情况 激光扫描共聚集显微镜×40,图中标尺为50 μm。2A.正常对照组小鼠肺组织中CD31呈阳性表达,8-OHdG阳性细胞少;2B.单纯CLP组小鼠肺组织中CD31呈阳性表达,8-OHdG阳性细胞较图2A明显增加;2C.CLP+脂肪间充质干细胞外泌体组小鼠肺组织中CD31呈阳性表达,8-OHdG阳性细胞较图2B明显减少

    注:CLP为盲肠结扎穿孔;绿色荧光为CD31阳性表达,红色荧光为8-OHdG阳性表达,蓝色荧光为细胞核阳性表达

    3  第3代肺血管内皮细胞(PMVEC)鉴定及吞噬人脂肪间充质干细胞(ADSC)来源外泌体情况。 3A.内皮细胞特异性标志物CD31呈阳性表达 FITC-4',6-二脒基-2-苯基吲哚×40,图中标尺为150 μm;3B.流式细胞术检测显示CD31阳性细胞占比为99.5%;3C.ADSC来源外泌体被PMVEC吞噬,分布于细胞质中 PKH26-4',6-二脒基-2-苯基吲哚×200,图中标尺为100 μm

    注:图3A中绿色为CD31阳性表达,蓝色为细胞核阳性表达;图3B中FITC为异硫氰酸荧光素,图中线段指平均荧光强度,P2为流式细胞仪设定的门,即在FITC的P2门里阳性细胞占总细胞数的99.5%;图3C中蓝色为细胞核阳性表达,红色为外泌体阳性表达

    4  免疫荧光法检测第3代肺血管内皮细胞(PMVEC)的8-羟基脱氧鸟苷(8-OHdG)表达情况 Alexa Fluor-4',6-二脒基-2-苯基吲哚×40,图中标尺为125 μm。4A.空白对照组细胞8-OHdG低表达;4B.单纯巨噬细胞上清液组8-OHdG表达较图4A明显增加;4C.巨噬细胞上清液+脂肪间充质干细胞外泌体组细胞8-OHdG表达介于图4A与图4B之间

    表1  3组第3代肺血管内皮细胞培养24 h后活性氧含量和通透性比较(x¯±s

    组别样本数活性氧通透性(ng/mL)
    空白对照组32 227±9070±10
    单纯巨噬细胞上清液组33 650±128193±32
    巨噬细胞上清液+ADSC外泌体组32 808±281121±28
    F44.5418.25
    P<0.001<0.005
    t115.736.34
    P1<0.0010.003
    t24.722.93
    P20.0090.043
    注:ADSC为脂肪间充质干细胞;活性氧含量以荧光强度反映,通透性以牛血清白蛋白质量浓度反映;F值、P值为3组间各指标总体比较所得;t1值、P1值为单纯巨噬细胞上清液组与空白对照组各指标比较所得;t2值、P2值为巨噬细胞上清液+ADSC外泌体组与单纯巨噬细胞上清液组各指标比较所得
    下载: 导出CSV

      《中华烧伤与创面修复杂志》第六届编辑委员会编辑委员名单

    终身顾问盛志勇程天民王正国樊代明付小兵夏照帆卞修武顾晓松李校堃
    顾 问肖光夏杨宗城汪仕良孙永华柴家科黄跃生岑瑛王旭
    名誉总编辑彭毅志
    总编辑罗高兴
    以下按姓氏拼音排序
    副总编辑郭光华韩春茂胡大海郇京宁梁光萍刘毅吕国忠吴军谢卫国
    姚咏明
    常务编辑委员官浩贺伟峰李孝建李宗瑜刘琰陆树良马显杰申传安沈余明
    孙炳伟谭 谦王达利王一兵夏成德肖仕初徐庆连于家傲袁志强
    张丕红张庆富张逸章一新
    编辑委员巴特陈国贤陈炯陈俊杰陈欣陈旭陈旭林陈昭宏程飚
    崔正军邓 君范锟铻方勇冯世海冯正直官浩郭光华韩春茂
    韩军涛郝岱峰贺伟峰胡大海郇京宁黄沙霍然姜笃银金培生
    赖文雷晋李德绘李小兵李晓亮李孝建李学拥李 毅李智
    李宗瑜梁光萍刘文军刘小龙刘旭盛刘琰刘毅陆树良罗高兴
    吕大伦吕国忠马朋林马显杰潘云川彭曦齐鸿燕邱林荣新洲
    申传安沈余明沈运彪史春梦宋保强宋国栋宋华培孙炳伟孙天骏
    谭谦唐洪泰陶克童亚林王达利王德运王光毅王凌峰王新刚
    王杨王一兵魏在荣吴健吴军吴银生夏成德肖厚安肖健
    肖仕初谢挺谢卫国徐庆连颜洪杨磊姚咏明于家傲袁志强
    曾元临詹剑华张恒术张家平张建祥张明华张丕红张 勤张庆富
    张逸章一新赵耀华赵永健朱世辉
    以下按英文首字母排序
    Chong Si Jack(新加坡) David N. Herndon(美国) Fiona Wood(澳大利亚)
    Malcolm Xing(邢孟秋,加拿大) Naiem S. Moiemen(英国) Ronald G. Tompkins(美国)
    Steven E. Wolf(美国) Tina L. Palmieri(美国) Yong-Ming Yu(尤永明,美国)
    下载: 导出CSV
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  99
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20

目录

    /

    返回文章
    返回