[1] |
LeppäpuskaIM, RannikkoEH, LaukkaM, et al. Low TGF-β1 in wound exudate predicts surgical site infection after axillary lymph node dissection[J]. J Surg Res, 2021,267:302-308. DOI: 10.1016/j.jss.2021.05.039.
|
[2] |
GotoT, SaliganLN. Wound pain and wound healing biomarkers from wound exudate: a scoping review[J]. J Wound Ostomy Continence Nurs, 2020,47(6):559-568. DOI: 10.1097/WON.0000000000000703.
|
[3] |
ZangT, BroszczakDA, BroadbentJA, et al. The biochemistry of blister fluid from pediatric burn injuries: proteomics and metabolomics aspects[J]. Expert Rev Proteomics, 2016,13(1):35-53. DOI: 10.1586/14789450.2016.1122528.
|
[4] |
ZhaoR, LangTC, KimA, et al. Early protein C activation is reflective of burn injury severity and plays a critical role in inflammatory burden and patient outcomes[J]. Burns, 2022,48(1):91-103. DOI: 10.1016/j.burns.2021.03.004.
|
[5] |
TanJ, LiN, GongY, et al. Procalcitonin kinetics early after severe burn injury and its value in diagnosis of sepsis[J]. Burns, 2021,47(8):1802-1809. DOI: 10.1016/j.burns.2021.02.024.
|
[6] |
PerssonC. Humoral first-line mucosal innate defence in vivo[J]. J Innate Immun, 2020,12(5):373-386. DOI: 10.1159/000506515.
|
[7] |
WheelerES, MillerTA. The blister and the second degree burn in guinea pigs: the effect of exposure[J]. Plast Reconstr Surg, 1976,57(1):74-83. DOI: 10.1097/00006534-197601000-00015.
|
[8] |
DespaF, OrgillDP, NeuwalderJ, et al. The relative thermal stability of tissue macromolecules and cellular structure in burn injury[J]. Burns, 2005,31(5):568-577. DOI: 10.1016/j.burns.2005.01.015.
|
[9] |
Vigiola CruzM, CarneyBC, LukerJN, et al. Plasma ameliorates endothelial dysfunction in burn injury[J]. J Surg Res, 2019,233:459-466. DOI: 10.1016/j.jss.2018.08.027.
|
[10] |
MeierTO, GuggenheimM, VetterST, et al. Microvascular regeneration in meshed skin transplants after severe burns[J]. Burns, 2011,37(6):1010-1014. DOI: 10.1016/j.burns.2011.01.001.
|
[11] |
ZangT, BroszczakDA, CuttleL, et al. Mass spectrometry based data of the blister fluid proteome of paediatric burn patients[J]. Data Brief, 2016,8:1099-1110. DOI: 10.1016/j.dib.2016.07.033.
|
[12] |
ZangT, BroszczakDA, CuttleL, et al. The blister fluid proteome of paediatric burns[J]. J Proteomics, 2016,146:122-132. DOI: 10.1016/j.jprot.2016.06.026.
|
[13] |
LintnerAC, BrennanP, MilesM, et al. Oral administration of injectable ketamine during burn wound dressing changes[J]. J Pharm Pract, 2021,34(3):423-427. DOI: 10.1177/0897190019876497.
|
[14] |
UllahS, MansoorS, AyubA, et al. An update on stem cells applications in burn wound healing[J]. Tissue Cell, 2021,72:101527. DOI: 10.1016/j.tice.2021.101527.
|
[15] |
MaZ, MoR, ChenC, et al. Surgical treatment of joint burn scar contracture: a 10-year single-center experience with long-term outcome evaluation[J]. Ann Transl Med, 2021,9(4):303. DOI: 10.21037/atm-20-4947.
|
[16] |
WiśniewskaJ, SłyszewskaM, KopcewiczM, et al. Comparative studies on the effect of pig adipose-derived stem cells (pASCs) preconditioned with hypoxia or normoxia on skin wound healing in mice[J]. Exp Cell Res, 2022,418(1):113263. DOI: 10.1016/j.yexcr.2022.113263.
|
[17] |
LeeSZ, HalimAS. Superior long term functional and scar outcome of Meek micrografting compared to conventional split thickness skin grafting in the management of burns[J]. Burns, 2019,45(6):1386-1400. DOI: 10.1016/j.burns.2019.04.011.
|
[18] |
GündüzM, SekmenliT, UğurluoğluC, et al. The effects of nitroglycerin in the zone of stasis in a rat burn model[J]. Ulus Travma Acil Cerrahi Derg, 2020,26(2):171-177. DOI: 10.14744/tjtes.2019.00005.
|
[19] |
WangHD, WeiZJ, LiJJ, et al. Application value of biofluid-based biomarkers for the diagnosis and treatment of spinal cord injury[J]. Neural Regen Res, 2022,17(5):963-971. DOI: 10.4103/1673-5374.324823.
|
[20] |
FerreiraMB, FonsecaT, CostaR, et al. Prevalence, risk factors and proteomic bioprofiles associated with heart failure in rheumatoid arthritis: the RA-HF study[J]. Eur J Intern Med, 2021,85:41-49. DOI: 10.1016/j.ejim.2020.11.002.
|
[21] |
WongCH, SongC, HengKS, et al. Plasma free hemoglobin: a novel diagnostic test for assessment of the depth of burn injury[J]. Plast Reconstr Surg, 2006,117(4):1206-1213. DOI: 10.1097/01.prs.0000200070.66604.1e.
|
[22] |
TanzerC, SampsonDL, BroadbentJA, et al. Evaluation of haemoglobin in blister fluid as an indicator of paediatric burn wound depth[J]. Burns, 2015,41(5):1114-1121. DOI: 10.1016/j.burns.2014.12.017.
|
[23] |
PanSC, WuLW, ChenCL, et al. Deep partial thickness burn blister fluid promotes neovascularization in the early stage of burn wound healing[J]. Wound Repair Regen, 2010,18(3):311-318. DOI: 10.1111/j.1524-475X.2010.00586.x.
|
[24] |
PanSC, WuLW, ChenCL, et al. Angiogenin expression in burn blister fluid: implications for its role in burn wound neovascularization[J]. Wound Repair Regen, 2012,20(5):731-739. DOI: 10.1111/j.1524-475X.2012.00819.x.
|
[25] |
PanSC, TsaiYH, ChuangCC, et al. Preliminary assessment of burn depth by paper-based ELISA for the detection of angiogenin in burn blister fluid-a proof of concept[J]. Diagnostics (Basel), 2020,10(3):127. DOI: 10.3390/diagnostics10030127.
|
[26] |
ZangT, CuttleL, BroszczakDA, et al. Characterization of the blister fluid proteome for pediatric burn classification[J]. J Proteome Res, 2019,18(1):69-85. DOI: 10.1021/acs.jproteome.8b00355.
|
[27] |
FinnertyCC, JeschkeMG, QianWJ, et al. Determination of burn patient outcome by large-scale quantitative discovery proteomics[J]. Crit Care Med, 2013,41(6):1421-1434. DOI: 10.1097/CCM.0b013e31827c072e.
|
[28] |
FrearCC, ZangT, GriffinBR, et al. The modulation of the burn wound environment by negative pressure wound therapy: insights from the proteome[J]. Wound Repair Regen, 2021,29(2):288-297. DOI: 10.1111/wrr.12887.
|
[29] |
ZhengJ, JohnsonM, MandalR, et al. A comprehensive targeted metabolomics assay for crop plant sample analysis[J]. Metabolites, 2021,11(5):303.DOI: 10.3390/metabo11050303.
|
[30] |
AderemiAV, AyelesoAO, OyedapoOO, et al. Metabolomics: a scoping review of its role as a tool for disease biomarker discovery in selected non-communicable diseases[J]. Metabolites, 2021,11(7) :418.DOI: 10.3390/metabo11070418.
|
[31] |
HendricksonC, LindenK, KreyerS, et al. 1H-NMR metabolomics identifies significant changes in metabolism over time in a porcine model of severe burn and smoke inhalation[J]. Metabolites, 2019,9(7):142.DOI: 10.3390/metabo9070142.
|
[32] |
YangG, ZhangY, WuD, et al. 1H-NMR metabolomics identifies significant changes in hypermetabolism after glutamine administration in burned rats[J]. Am J Transl Res, 2019,11(12):7286-7299.
|
[33] |
WalejkoJM, ChristopherBA, CrownSB, et al. Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart[J]. Nat Commun, 2021,12(1):1680. DOI: 10.1038/s41467-021-21962-2.
|
[34] |
PotenzaF, CufaroMC, Di BiaseL, et al. Proteomic analysis of marinesco-sjogren syndrome fibroblasts indicates pro-survival metabolic adaptation to SIL1 loss[J]. Int J Mol Sci, 2021,22(22):12449. DOI: 10.3390/ijms222212449.
|
[35] |
VillaniAP, RozieresA, BensaidB, et al. Massive clonal expansion of polycytotoxic skin and blood CD8+ T cells in patients with toxic epidermal necrolysis[J]. Sci Adv, 2021,7(12):eabe0013. DOI: 10.1126/sciadv.abe0013.
|
[36] |
MargaroliC, BradleyB, ThompsonC, et al. Distinct compartmentalization of immune cells and mediators characterizes bullous pemphigoid disease[J]. Exp Dermatol, 2020,29(12):1191-1198. DOI: 10.1111/exd.14209.
|
[37] |
ChenSH, WongTW, LeeCH, et al. Predominance of CD14+ cells in burn blister fluids[J]. Ann Plast Surg, 2018,80(2S Suppl 1):S70-74. DOI: 10.1097/SAP.0000000000001305.
|
[38] |
ZhangM, MalikAB, RehmanJ. Endothelial progenitor cells and vascular repair[J]. Curr Opin Hematol, 2014,21(3):224-228. DOI: 10.1097/MOH.0000000000000041.
|
[39] |
GholobovaD, TerrieL, MackovaK, et al. Functional evaluation of prevascularization in one-stage versus two-stage tissue engineering approach of human bio-artificial muscle[J]. Biofabrication, 2020,12(3):035021. DOI: 10.1088/1758-5090/ab8f36.
|
[40] |
姚咏明, 栾樱译. 严重烧创伤感染及其并发症的免疫新认识[J].中华烧伤杂志,2021,37(6):519-523. DOI: 10.3760/cma.j.cn501120-20210118-00025.
|
[41] |
华荣, 荣新洲, 张涛, 等. 严重烧伤患者早期应用阿米卡星的药代动力学研究[J].中华烧伤杂志,2008,24(1):33-35. DOI: 10.3760/cma.j.issn.1009-2587.2008.01.010.
|
[42] |
覃凤均, 卞婧, 田彭, 等. 大面积烧伤患者早期应用万古霉素的药代动力学研究[J].中国医刊,2020,55(3):287-290. DOI: 10.3969/j.issn.1008-1070.2020.03.016.
|
[43] |
杨建辉,孟园园.万古霉素血药浓度检测对烧伤总面积>50%体表总面积患者药物剂量调整的影响[J].医药论坛杂志,2021,42(6):39-41,45.
|