留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧伤水疱液相关研究进展

董鸿斐 黄茜 游爽 李先慧

董鸿斐, 黄茜, 游爽, 等. 烧伤水疱液相关研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 994-998. DOI: 10.3760/cma.j.cn501120-20211109-00380.
引用本文: 董鸿斐, 黄茜, 游爽, 等. 烧伤水疱液相关研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 994-998. DOI: 10.3760/cma.j.cn501120-20211109-00380.
Dong HF,Huang X,You S,et al.Research advances on burn blister fluid[J].Chin J Burns Wounds,2022,38(10):994-998.DOI: 10.3760/cma.j.cn501120-20211109-00380.
Citation: Dong HF,Huang X,You S,et al.Research advances on burn blister fluid[J].Chin J Burns Wounds,2022,38(10):994-998.DOI: 10.3760/cma.j.cn501120-20211109-00380.

烧伤水疱液相关研究进展

doi: 10.3760/cma.j.cn501120-20211109-00380
详细信息
    通讯作者:

    李先慧,Email:tommy517@126.com

Research advances on burn blister fluid

More Information
  • 摘要: 烧伤常导致受损组织产生大量渗出物,并在创面形成水疱,而烧伤水疱液内含有大量与创面愈合相关的分子,可反映烧伤创面局部组织微环境状态。解析烧伤水疱液中细胞成分、信号介质和蛋白质分子等相关信息有助于了解烧伤创面局部反应和组织微环境,进而助力临床烧伤救治。该文通过解读烧伤水疱液产生机制,探讨烧伤水疱液在创面评估中的作用,并综合烧伤水疱液在蛋白质组学、代谢组学、细胞成分、药代动力学4个方向的研究进展,提出对烧伤水疱液研究的思考与展望,以期为临床烧伤创面评估及治疗提供助力,也为烧伤水疱液的后续研究提供思路。

     

  • [1] LeppäpuskaIM, RannikkoEH, LaukkaM, et al. Low TGF-β1 in wound exudate predicts surgical site infection after axillary lymph node dissection[J]. J Surg Res, 2021,267:302-308. DOI: 10.1016/j.jss.2021.05.039.
    [2] GotoT, SaliganLN. Wound pain and wound healing biomarkers from wound exudate: a scoping review[J]. J Wound Ostomy Continence Nurs, 2020,47(6):559-568. DOI: 10.1097/WON.0000000000000703.
    [3] ZangT, BroszczakDA, BroadbentJA, et al. The biochemistry of blister fluid from pediatric burn injuries: proteomics and metabolomics aspects[J]. Expert Rev Proteomics, 2016,13(1):35-53. DOI: 10.1586/14789450.2016.1122528.
    [4] ZhaoR, LangTC, KimA, et al. Early protein C activation is reflective of burn injury severity and plays a critical role in inflammatory burden and patient outcomes[J]. Burns, 2022,48(1):91-103. DOI: 10.1016/j.burns.2021.03.004.
    [5] TanJ, LiN, GongY, et al. Procalcitonin kinetics early after severe burn injury and its value in diagnosis of sepsis[J]. Burns, 2021,47(8):1802-1809. DOI: 10.1016/j.burns.2021.02.024.
    [6] PerssonC. Humoral first-line mucosal innate defence in vivo[J]. J Innate Immun, 2020,12(5):373-386. DOI: 10.1159/000506515.
    [7] WheelerES, MillerTA. The blister and the second degree burn in guinea pigs: the effect of exposure[J]. Plast Reconstr Surg, 1976,57(1):74-83. DOI: 10.1097/00006534-197601000-00015.
    [8] DespaF, OrgillDP, NeuwalderJ, et al. The relative thermal stability of tissue macromolecules and cellular structure in burn injury[J]. Burns, 2005,31(5):568-577. DOI: 10.1016/j.burns.2005.01.015.
    [9] Vigiola CruzM, CarneyBC, LukerJN, et al. Plasma ameliorates endothelial dysfunction in burn injury[J]. J Surg Res, 2019,233:459-466. DOI: 10.1016/j.jss.2018.08.027.
    [10] MeierTO, GuggenheimM, VetterST, et al. Microvascular regeneration in meshed skin transplants after severe burns[J]. Burns, 2011,37(6):1010-1014. DOI: 10.1016/j.burns.2011.01.001.
    [11] ZangT, BroszczakDA, CuttleL, et al. Mass spectrometry based data of the blister fluid proteome of paediatric burn patients[J]. Data Brief, 2016,8:1099-1110. DOI: 10.1016/j.dib.2016.07.033.
    [12] ZangT, BroszczakDA, CuttleL, et al. The blister fluid proteome of paediatric burns[J]. J Proteomics, 2016,146:122-132. DOI: 10.1016/j.jprot.2016.06.026.
    [13] LintnerAC, BrennanP, MilesM, et al. Oral administration of injectable ketamine during burn wound dressing changes[J]. J Pharm Pract, 2021,34(3):423-427. DOI: 10.1177/0897190019876497.
    [14] UllahS, MansoorS, AyubA, et al. An update on stem cells applications in burn wound healing[J]. Tissue Cell, 2021,72:101527. DOI: 10.1016/j.tice.2021.101527.
    [15] MaZ, MoR, ChenC, et al. Surgical treatment of joint burn scar contracture: a 10-year single-center experience with long-term outcome evaluation[J]. Ann Transl Med, 2021,9(4):303. DOI: 10.21037/atm-20-4947.
    [16] WiśniewskaJ, SłyszewskaM, KopcewiczM, et al. Comparative studies on the effect of pig adipose-derived stem cells (pASCs) preconditioned with hypoxia or normoxia on skin wound healing in mice[J]. Exp Cell Res, 2022,418(1):113263. DOI: 10.1016/j.yexcr.2022.113263.
    [17] LeeSZ, HalimAS. Superior long term functional and scar outcome of Meek micrografting compared to conventional split thickness skin grafting in the management of burns[J]. Burns, 2019,45(6):1386-1400. DOI: 10.1016/j.burns.2019.04.011.
    [18] GündüzM, SekmenliT, UğurluoğluC, et al. The effects of nitroglycerin in the zone of stasis in a rat burn model[J]. Ulus Travma Acil Cerrahi Derg, 2020,26(2):171-177. DOI: 10.14744/tjtes.2019.00005.
    [19] WangHD, WeiZJ, LiJJ, et al. Application value of biofluid-based biomarkers for the diagnosis and treatment of spinal cord injury[J]. Neural Regen Res, 2022,17(5):963-971. DOI: 10.4103/1673-5374.324823.
    [20] FerreiraMB, FonsecaT, CostaR, et al. Prevalence, risk factors and proteomic bioprofiles associated with heart failure in rheumatoid arthritis: the RA-HF study[J]. Eur J Intern Med, 2021,85:41-49. DOI: 10.1016/j.ejim.2020.11.002.
    [21] WongCH, SongC, HengKS, et al. Plasma free hemoglobin: a novel diagnostic test for assessment of the depth of burn injury[J]. Plast Reconstr Surg, 2006,117(4):1206-1213. DOI: 10.1097/01.prs.0000200070.66604.1e.
    [22] TanzerC, SampsonDL, BroadbentJA, et al. Evaluation of haemoglobin in blister fluid as an indicator of paediatric burn wound depth[J]. Burns, 2015,41(5):1114-1121. DOI: 10.1016/j.burns.2014.12.017.
    [23] PanSC, WuLW, ChenCL, et al. Deep partial thickness burn blister fluid promotes neovascularization in the early stage of burn wound healing[J]. Wound Repair Regen, 2010,18(3):311-318. DOI: 10.1111/j.1524-475X.2010.00586.x.
    [24] PanSC, WuLW, ChenCL, et al. Angiogenin expression in burn blister fluid: implications for its role in burn wound neovascularization[J]. Wound Repair Regen, 2012,20(5):731-739. DOI: 10.1111/j.1524-475X.2012.00819.x.
    [25] PanSC, TsaiYH, ChuangCC, et al. Preliminary assessment of burn depth by paper-based ELISA for the detection of angiogenin in burn blister fluid-a proof of concept[J]. Diagnostics (Basel), 2020,10(3):127. DOI: 10.3390/diagnostics10030127.
    [26] ZangT, CuttleL, BroszczakDA, et al. Characterization of the blister fluid proteome for pediatric burn classification[J]. J Proteome Res, 2019,18(1):69-85. DOI: 10.1021/acs.jproteome.8b00355.
    [27] FinnertyCC, JeschkeMG, QianWJ, et al. Determination of burn patient outcome by large-scale quantitative discovery proteomics[J]. Crit Care Med, 2013,41(6):1421-1434. DOI: 10.1097/CCM.0b013e31827c072e.
    [28] FrearCC, ZangT, GriffinBR, et al. The modulation of the burn wound environment by negative pressure wound therapy: insights from the proteome[J]. Wound Repair Regen, 2021,29(2):288-297. DOI: 10.1111/wrr.12887.
    [29] ZhengJ, JohnsonM, MandalR, et al. A comprehensive targeted metabolomics assay for crop plant sample analysis[J]. Metabolites, 2021,11(5):303.DOI: 10.3390/metabo11050303.
    [30] AderemiAV, AyelesoAO, OyedapoOO, et al. Metabolomics: a scoping review of its role as a tool for disease biomarker discovery in selected non-communicable diseases[J]. Metabolites, 2021,11(7) :418.DOI: 10.3390/metabo11070418.
    [31] HendricksonC, LindenK, KreyerS, et al. 1H-NMR metabolomics identifies significant changes in metabolism over time in a porcine model of severe burn and smoke inhalation[J]. Metabolites, 2019,9(7):142.DOI: 10.3390/metabo9070142.
    [32] YangG, ZhangY, WuD, et al. 1H-NMR metabolomics identifies significant changes in hypermetabolism after glutamine administration in burned rats[J]. Am J Transl Res, 2019,11(12):7286-7299.
    [33] WalejkoJM, ChristopherBA, CrownSB, et al. Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart[J]. Nat Commun, 2021,12(1):1680. DOI: 10.1038/s41467-021-21962-2.
    [34] PotenzaF, CufaroMC, Di BiaseL, et al. Proteomic analysis of marinesco-sjogren syndrome fibroblasts indicates pro-survival metabolic adaptation to SIL1 loss[J]. Int J Mol Sci, 2021,22(22):12449. DOI: 10.3390/ijms222212449.
    [35] VillaniAP, RozieresA, BensaidB, et al. Massive clonal expansion of polycytotoxic skin and blood CD8+ T cells in patients with toxic epidermal necrolysis[J]. Sci Adv, 2021,7(12):eabe0013. DOI: 10.1126/sciadv.abe0013.
    [36] MargaroliC, BradleyB, ThompsonC, et al. Distinct compartmentalization of immune cells and mediators characterizes bullous pemphigoid disease[J]. Exp Dermatol, 2020,29(12):1191-1198. DOI: 10.1111/exd.14209.
    [37] ChenSH, WongTW, LeeCH, et al. Predominance of CD14+ cells in burn blister fluids[J]. Ann Plast Surg, 2018,80(2S Suppl 1):S70-74. DOI: 10.1097/SAP.0000000000001305.
    [38] ZhangM, MalikAB, RehmanJ. Endothelial progenitor cells and vascular repair[J]. Curr Opin Hematol, 2014,21(3):224-228. DOI: 10.1097/MOH.0000000000000041.
    [39] GholobovaD, TerrieL, MackovaK, et al. Functional evaluation of prevascularization in one-stage versus two-stage tissue engineering approach of human bio-artificial muscle[J]. Biofabrication, 2020,12(3):035021. DOI: 10.1088/1758-5090/ab8f36.
    [40] 姚咏明, 栾樱译. 严重烧创伤感染及其并发症的免疫新认识[J].中华烧伤杂志,2021,37(6):519-523. DOI: 10.3760/cma.j.cn501120-20210118-00025.
    [41] 华荣, 荣新洲, 张涛, 等. 严重烧伤患者早期应用阿米卡星的药代动力学研究[J].中华烧伤杂志,2008,24(1):33-35. DOI: 10.3760/cma.j.issn.1009-2587.2008.01.010.
    [42] 覃凤均, 卞婧, 田彭, 等. 大面积烧伤患者早期应用万古霉素的药代动力学研究[J].中国医刊,2020,55(3):287-290. DOI: 10.3969/j.issn.1008-1070.2020.03.016.
    [43] 杨建辉,孟园园.万古霉素血药浓度检测对烧伤总面积>50%体表总面积患者药物剂量调整的影响[J].医药论坛杂志,2021,42(6):39-41,45.
  • 加载中
计量
  • 文章访问数:  263
  • HTML全文浏览量:  50
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 网络出版日期:  2022-10-24

目录

    /

    返回文章
    返回