[1] |
GovermanJ, HeW, MartelloG, et al. The presence of scarring and associated morbidity in the Burn Model System national database[J]. Ann Plast Surg,2019,82(3 Suppl 2):S162-168. DOI: 10.1097/SAP.0000000000001826.
|
[2] |
KhalidFA, MehroseMY, SaleemM, et al. Comparison of efficacy and safety of intralesional triamcinolone and combination of triamcinolone with 5-fluorouracil in the treatment of keloids and hypertrophic scars: randomised control trial[J]. Burns,2019,45(1):69-75. DOI: 10.1016/j.burns.2018.08.011.
|
[3] |
MaoXH,WoY,HeR,et al.Preparation and characterization of different sizes of ethosomes encapsulated with 5-fluorouracil and its experimental study of permeability in hypertrophic scar[J].J Nanosci Nanotechnol,2010,10(7):4178-4183.DOI: 10.1166/jnn.2010.2207.
|
[4] |
TawfikAA, FathyM, BadawiA, et al. Topical 5 fluorouracil cream vs combined 5 fluorouracil and fractional erbium YAG laser for treatment of severe hypertrophic scars[J]. Clin Cosmet Investig Dermatol,2019,12:173-180. DOI: 10.2147/CCID.S191137.
|
[5] |
KimWI, KimS, ChoSW, et al. The efficacy of bleomycin for treating keloid and hypertrophic scar: a systematic review and meta-analysis[J]. J Cosmet Dermatol,2020,19(12):3357-3366. DOI: 10.1111/jocd.13390.
|
[6] |
XieY, WangH, MaoJZ, et al. Enhanced in vitro efficacy for inhibiting hypertrophic scar by bleomycin-loaded dissolvinghyaluronic acid microneedles[J]. J Mater Chem B,2019,7(42):6604-6611. DOI: 10.1039/c9tb01449g.
|
[7] |
胡大海,汤朝武,陈璧,等.三苯氧胺抑制瘢痕成纤维细胞DNA及胶原合成[J].第四军医大学学报,2000,21(12):1527-1529.DOI: 10.3321/j.issn:1000-2790.2000.12.030.
|
[8] |
MehrvarzS, EbrahimiA, SahraeiH, et al. Effects of topical tamoxifen on wound healing of burned skin in rats[J]. Arch Plast Surg,2017,44(5):378-383. DOI: 10.5999/aps.2017.44.5.378.
|
[9] |
SunY, GeYB, FuYX, et al. Mitomycin C induces fibroblasts apoptosis and reduces epidural fibrosis by regulating miR-200b and its targeting of RhoE[J]. Eur J Pharmacol,2015,765:198-208. DOI: 10.1016/j.ejphar.2015.08.002.
|
[10] |
谢红卫,陈霞,张海琼,等. 手术切除联合丝裂霉素C治疗耳廓增生性瘢痕的临床疗效[J]. 中南大学学报(医学版),2020,45(11):1368-1371. DOI: 10.11817/j.issn.1672-7347.2020.200388.
|
[11] |
ZhengB, FangQQ, WangXF, et al. The effect of topical ramipril and losartan cream in inhibiting scar formation[J]. Biomed Pharmacother,2019,118:109394. DOI: 10.1016/j.biopha.2019.109394.
|
[12] |
许宁,薛学义,郭树平,等. 钙通道阻滞剂维拉帕米对转化生长因子-β1诱导尿道瘢痕成纤维细胞α-平滑肌肌动蛋白和细胞外基质的作用[J]. 中华实验外科杂志,2013,30(9):1924-1926. DOI: 10.3760/cma.j.issn.1001-9030.2013.09.050.
|
[13] |
ChoiJ, HanYN, RhaEY, et al. Verapamil-containing silicone gel reduces scar hypertrophy[J]. Int Wound J,2021,18(5):647-656. DOI: 10.1111/iwj.13566.
|
[14] |
WangR,MaoY,ZhangZY,et al.Role of verapamil in preventing and treating hypertrophic scars and keloids[J].Int Wound J,2016,13(4):461-468.DOI: 10.1111/iwj.12455.
|
[15] |
WangP, GuLS, BiHS, et al. Comparing the efficacy and safety of intralesional verapamil with intralesional triamcinolone acetonide in treatment of hypertrophic scars and keloids: a meta-analysis of randomized controlled trials[J]. Aesthet Surg J,2021,41(6):NP567-NP575. DOI: 10.1093/asj/sjaa357.
|
[16] |
ZhaoP, SuiBD, LiuN, et al. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application[J]. Aging Cell,2017,16(5):1083-1093. DOI: 10.1111/acel.12635.
|
[17] |
ChoganF, MirmajidiT, RezayanAH, et al. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing[J]. Acta Biomater,2020,113:144-163. DOI: 10.1016/j.actbio.2020.06.031.
|
[18] |
WangJF, ChenH, ShankowskyHA, et al. Improved scar in postburn patients following interferon-alpha2b treatment is associated with decreased angiogenesis mediated by vascular endothelial cell growth factor[J]. J Interferon Cytokine Res,2008,28(7):423-434. DOI: 10.1089/jir.2007.0104.
|
[19] |
孟凡伟,刘玉强,史本康,等.干扰素-α2b对尿道瘢痕成纤维细胞生物学的影响[J].山东大学学报(医学版),2011,49(12):92-95.
|
[20] |
BiWR,XuGT,LvLX,et al.The ratio of transforming growth factor-β1/bone morphogenetic protein-7 in the progression of the epithelial-mesenchymal transition contributes to rat liver fibrosis[J].Genet Mol Res,2014,13(1):1005-1014.DOI: 10.4238/2014.February.20.2.
|
[21] |
QiuSS, DotorJ, HontanillaB. Effect of P144® (anti-TGF-β) in an "in vivo" human hypertrophic scar model in nude mice[J]. PLoS One,2015,10(12):e0144489. DOI: 10.1371/journal.pone.0144489.
|
[22] |
KwakDH, BaeTH, KimWS, et al. Anti-vascular endothelial growth factor (bevacizumab) therapy reduces hypertrophic scar formation in a rabbit ear wounding model[J]. Arch Plast Surg,2016,43(6):491-497. DOI: 10.5999/aps.2016.43.6.491.
|
[23] |
ShiJ, WuYT, GuoSY, et al. The efficacy of anti-VEGF antibody-modified liposomes loaded with paeonol in the prevention and treatment of hypertrophic scars[J]. Drug Dev Ind Pharm,2019,45(3):439-455. DOI: 10.1080/03639045.2018.1546315.
|
[24] |
XieJL, BianHN, QiSH, et al. Basic fibroblast growth factor (bFGF) alleviates the scar of the rabbit ear model in wound healing[J]. Wound Repair Regen,2008,16(4):576-581. DOI: 10.1111/j.1524-475X.2008.00405.x.
|
[25] |
PanSC, LeeCH, ChenCL, et al. Angiogenin attenuates scar formation in burn patients by reducing fibroblast proliferation and transforming growth factor β1 secretion[J]. Ann Plast Surg, 2018, 80(2S Suppl 1):S79-83. DOI: 10.1097/SAP.0000000000001306.
|
[26] |
WangP,JiangLZ,XueB.Recombinant human endostatin reduces hypertrophic scar formation in rabbit ear model through down-regulation of VEGF and TIMP-1[J].Afr Health Sci,2016,16(2):542-553.DOI: 10.4314/ahs.v16i2.23.
|
[27] |
GongYF, ZhangXM, YuJ, et al. Effect of recombinant human endostatin on hypertrophic scar fibroblast apoptosis in a rabbit ear model[J]. Biomed Pharmacother,2017,91:680-686. DOI: 10.1016/j.biopha.2017.04.116.
|
[28] |
ChenBG, LiHC, XiaW. Imiquimod regulating Th1 and Th2 cell-related chemokines to inhibit scar hyperplasia[J]. Int Wound J,2019,16(6):1281-1288. DOI: 10.1111/iwj.13183.
|
[29] |
MenezesMCS, BuzelinM, NunesCB, et al. Tacrolimus action pathways in an ointment base for hypertrophic scar prevention in a rabbit ear model[J]. An Bras Dermatol,2021,96(4):429-435. DOI: 10.1016/j.abd.2020.08.019.
|
[30] |
LiHM, PengQ, GuoYS, et al. Preparation and in vitro and in vivo study of asiaticoside-loaded nanoemulsions and nanoemulsions-based gels for transdermal delivery[J]. Int J Nanomedicine,2020,15:3123-3136. DOI: 10.2147/IJN.S241923.
|
[31] |
SongJY, TruongDV, YangBS. Quercetin shows the pharmacological activity to simultaneously downregulate the inflammatory and fibrotic responses to tissue injury in association with its ability to target multi-kinases[J]. Pharmacology,2018,102(3/4):142-153. DOI: 10.1159/000490417.
|
[32] |
WangF, LiXX, WangXY, et al. Efficacy of topical silicone gel in scar management: a systematic review and meta-analysis of randomised controlled trials[J]. Int Wound J, 2020, 17(3):765-773. DOI: 10.1111/iwj.13337.
|
[33] |
KimSH, LeeSJ, LeeJW, et al. Clinical trial to evaluate the efficacy of botulinum toxin type A injection for reducing scars in patients with forehead laceration: a double-blinded, randomized controlled study[J]. Medicine (Baltimore),2019,98(34):e16952. DOI: 10.1097/MD.0000000000016952.
|
[34] |
BiML, SunPF, LiDY, et al. Intralesional injection of botulinum toxin type A compared with intralesional injection of corticosteroid for the treatment of hypertrophic scar and keloid: a systematic review and meta-analysis[J]. Med Sci Monit,2019,25:2950-2958. DOI: 10.12659/MSM.916305.
|
[35] |
RiccioM, MarchesiniA, SenesiL, et al. Managing pathologic scars by injecting auto-cross-linked hyaluronic acid: a preliminary prospective clinical study[J]. Aesthetic Plast Surg,2019,43(2):480-489. DOI: 10.1007/s00266-018-01303-3.
|
[36] |
HuCH, TsengYW, LeeCW, et al. Combination of mesenchymal stem cell-conditioned medium and botulinum toxin type A for treating human hypertrophic scars[J]. J Plast Reconstr Aesthet Surg,2020,73(3):516-527. DOI: 10.1016/j.bjps.2019.07.010.
|
[37] |
XieF, TengL, XuJJ, et al. Adipose-derived mesenchymal stem cells inhibit cell proliferation and migration and suppress extracellular matrix synthesis in hypertrophic-scar and keloid fibroblasts[J]. Exp Ther Med,2021,21(2):139. DOI: 10.3892/etm.2020.9571.
|
[38] |
RenY,DengCL,WanWD,et al.Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation[J].Mol Med Rep,2015,11(4):2471-2476.DOI: 10.3892/mmr.2014.3115.
|
[39] |
NiJ, LiuXJ, YinYH, et al. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway[J]. Oxid Med Cell Longev,2019,2019:1958941. DOI: 10.1155/2019/1958941.
|
[40] |
ZhaoB, ZhangYJ, HanSC, et al. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation[J]. J Mol Histol,2017,48(2):121-132. DOI: 10.1007/s10735-017-9711-x.
|
[41] |
辛增桃,田朦,靳林昊,等. 纳米脂肪联合PRP注射治疗增生性瘢痕[J]. 中国美容医学,2020,29(10):69-72.
|
[42] |
DaiZZ, LouXZ, ShenT, et al. Combination of ablative fractional carbon dioxide laser and platelet-rich plasma treatment to improve hypertrophic scars: a retrospective clinical observational study[J/OL]. Burns Trauma,2021,9:tkab016[2021-11-18]. https://pubmed.ncbi.nlm.nih.gov/34337088/.DOI: 10.1093/burnst/tkab016.
|
[43] |
WengWZ, HeSS, SongHY, et al. Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior[J]. ACS Nano,2018,12(8):7601-7612. DOI: 10.1021/acsnano.7b07439.
|