留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干细胞的组织工程修复材料促进体表慢性难愈合创面愈合的研究进展

彭雨 孟浩 李品学 姜玉峰 付小兵

彭雨, 孟浩, 李品学, 等. 基于干细胞的组织工程修复材料促进体表慢性难愈合创面愈合的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(3): 290-295. DOI: 10.3760/cma.j.cn501225-20220407-00126.
引用本文: 彭雨, 孟浩, 李品学, 等. 基于干细胞的组织工程修复材料促进体表慢性难愈合创面愈合的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(3): 290-295. DOI: 10.3760/cma.j.cn501225-20220407-00126.
Peng Y,Meng H,Li PX,et al.Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface[J].Chin J Burns Wounds,2023,39(3):290-295.DOI: 10.3760/cma.j.cn501225-20220407-00126.
Citation: Peng Y,Meng H,Li PX,et al.Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface[J].Chin J Burns Wounds,2023,39(3):290-295.DOI: 10.3760/cma.j.cn501225-20220407-00126.

基于干细胞的组织工程修复材料促进体表慢性难愈合创面愈合的研究进展

doi: 10.3760/cma.j.cn501225-20220407-00126
基金项目: 

海南岛(南中国海)重要战略区域紧急医学救援体系建设规划 2022-XZ-11

详细信息
    通讯作者:

    姜玉峰,Email:fisherman306@qq.com

    付小兵,Email:fuxiaobing@vip.sina.com

Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface

Funds: 

Construction Planning of Emergency Medical Rescue System in Important Strategic Regions of Hainan Island (South China Sea) in China 2022-XZ-11

More Information
  • 摘要: 体表慢性难愈合创面的修复是一个复杂的医学问题,涉及创面愈合的各个阶段。近年来干细胞及组织工程为修复慢性难愈合创面带来了希望。干细胞具有良好的再生能力和旁分泌作用;多种组织工程策略有修复体表慢性难愈合创面的潜力,还可以提高干细胞的递送效率。该文对慢性难愈合创面的病理特征、用于修复慢性难愈合创面的干细胞、基于干细胞的组织工程创面修复策略等进行综述。

     

  • [1] 付小兵. 中国组织修复与再生医学健康发展的思考与实践[J]. 中华创伤杂志, 2021, 37(7):580-585. DOI: 10.3760/cma.j.cn501098-20210525-00319.
    [2] HuangS, FuX. Stem cell therapies and regenerative medicine in China[J]. Sci China Life Sci, 2014, 57(2):157-161. DOI: 10.1007/s11427-014-4608-3.
    [3] 姜玉峰, 付小兵, 陆树良, 等. 中国人群体表慢性难愈合创面病原微生物学特征分析[J]. 感染、炎症、修复, 2011, 12(3):134-138. DOI: 10.3969/j.issn.1672-8521.2011.03.003.
    [4] DingX, TangQ, XuZ, et al. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice[J/OL]. Burns Trauma, 2022, 10:tkac014[2022-04-07].https://pubmed.ncbi.nlm.nih.gov/35611318/.DOI: 10.1093/burnst/tkac014.
    [5] DingYW, WangZY, RenZW, et al. Advances in modified hyaluronic acid-based hydrogels for skin wound healing[J]. Biomater Sci, 2022, 10(13):3393-3409. DOI: 10.1039/d2bm00397j.
    [6] SchilrreffP, AlexievU. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment[J]. Int J Mol Sci, 2022, 23(9):4928. DOI: 10.3390/ijms23094928.
    [7] WeiX, LiM, ZhengZ, et al. Senescence in chronic wounds and potential targeted therapies[J/OL]. Burns Trauma, 2022, 10:tkab045[2022-04-07].https://pubmed.ncbi.nlm.nih.gov/35187179/. DOI: 10.1093/burnst/tkab045.
    [8] PrzekoraA. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro?[J]. Cells, 2020, 9(7):1622. DOI: 10.3390/cells9071622.
    [9] 王莹, 代彦丽, 朴金龙, 等. 炎症因子、生长因子以及凋亡因子在压疮慢性难愈合性创面中的表达及作用[J]. 中国应用生理学杂志, 2017, 33(2):181-184,188. DOI: 10.12047/j.cjap.5425.2017.046.
    [10] ChangM, NguyenTT. Strategy for treatment of infected diabetic foot ulcers[J]. Acc Chem Res, 2021, 54(5):1080-1093. DOI: 10.1021/acs.accounts.0c00864.
    [11] BerthiaumeF, HsiaHC. Regenerative approaches for chronic wounds[J]. Annu Rev Biomed Eng, 2022, 24:61-83. DOI: 10.1146/annurev-bioeng-010220-113008.
    [12] MarandaEL, Rodriguez-MenocalL, BadiavasEV. Role of mesenchymal stem cells in dermal repair in burns and diabetic wounds[J]. Curr Stem Cell Res Ther, 2017, 12(1):61-70. DOI: 10.2174/1574888x11666160714115926.
    [13] GolchinA,ShamsF,BasiriA,et al.Combination therapy of stem cell-derived exosomes and biomaterials in the wound healing[J].Stem Cell Rev Rep,2022,18(6):1892-1911.DOI: 10.1007/s12015-021-10309-5.
    [14] García-VarelaL, Vállez GarcíaD, AguiarP, et al. Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13):4307-4317. DOI: 10.1007/s00259-021-05411-2.
    [15] WickmanA. Best practices in engagement and research to practice[J]. J Agromedicine, 2021, 26(1):73-74. DOI: 10.1080/1059924X.2021.1849514.
    [16] GoreckaJ, KostiukV, FereydooniA, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing[J]. Stem Cell Res Ther, 2019, 10(1):87. DOI: 10.1186/s13287-019-1185-1.
    [17] Gerami-NainiB, SmithA, MaioneAG, et al. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative Sendai virus[J]. Cell Reprogram, 2016, 18(4):214-223. DOI: 10.1089/cell.2015.0087.
    [18] GurusamyN, AlsayariA, RajasinghS, et al. Adult stem cells for regenerative therapy[J]. Prog Mol Biol Transl Sci, 2018, 160:1-22. DOI: 10.1016/bs.pmbts.2018.07.009.
    [19] Guillamat-PratsR. The role of MSC in wound healing, scarring and regeneration[J]. Cells, 2021, 10(7):1729. DOI: 10.3390/cells10071729.
    [20] AkasakaY.The role of mesenchymal stromal cells in tissue repair and fibrosis[J].Adv Wound Care (New Rochelle),2022,11(11):561-574.DOI: 10.1089/wound.2021.0037.
    [21] LangerR, VacantiJ. Advances in tissue engineering[J]. J Pediatr Surg, 2016, 51(1):8-12. DOI: 10.1016/j.jpedsurg.2015.10.022.
    [22] KocanB, MaziarzA, TabarkiewiczJ, et al. Trophic activity and phenotype of adipose tissue-derived mesenchymal stem cells as a background of their regenerative potential[J]. Stem Cells Int, 2017, 2017:1653254. DOI: 10.1155/2017/1653254.
    [23] EncisoN, AvedilloL, FermínML, et al. Cutaneous wound healing: canine allogeneic ASC therapy[J]. Stem Cell Res Ther, 2020, 11(1):261. DOI: 10.1186/s13287-020-01778-5.
    [24] FuX,LiuG,HalimA,et al.Mesenchymal stem cell migration and tissue repair[J].Cells,2019,8(8):784.DOI: 10.3390/cells8080784.
    [25] CaoY, GangX, SunC, et al. Mesenchymal stem cells improve healing of diabetic foot ulcer[J]. J Diabetes Res, 2017, 2017:9328347. DOI: 10.1155/2017/9328347.
    [26] YanG, XuX, ZhangW, et al. Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries[J]. Nanotechnology, 2020, 31(20):205402. DOI: 10.1088/1361-6528/ab7047.
    [27] HuaJ, GongJ, MengH, et al. Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow[J]. Cell Biol Int, 2013,38(2):198-210. DOI: 10.1002/cbin.10188.
    [28] MahmoodR, ChoudheryMS, MehmoodA, et al. In vitro differentiation potential of human placenta derived cells into skin cells[J]. Stem Cells Int, 2015, 2015:841062. DOI: 10.1155/2015/841062.
    [29] UchidaK, OhkuboT, UtsunoF, et al. Modified Li7P3S11 glass-ceramic electrolyte and its characterization[J]. ACS Appl Mater Interfaces, 2021, 13(31):37071-37081. DOI: 10.1021/acsami.1c08507.
    [30] LiuL,YuY,HouY,et al.Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats[J].PLoS One,2014,9(2):e88348.DOI: 10.1371/journal.pone.0088348.
    [31] SharmaP, KumarA, DeyAD, et al. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: a promise to heal from within[J]. Life Sci, 2021, 268:118932. DOI: 10.1016/j.lfs.2020.118932.
    [32] TangX, QinH, GuX, et al. China's landscape in regenerative medicine[J]. Biomaterials, 2017, 124:78-94. DOI: 10.1016/j.biomaterials.2017.01.044.
    [33] MirzadeganE, GolshahiH, KazemnejadS. Current evidence on immunological and regenerative effects of menstrual blood stem cells seeded on scaffold consisting of amniotic membrane and silk fibroin in chronic wound[J]. Int Immunopharmacol, 2020, 85:106595. DOI: 10.1016/j.intimp.2020.106595.
    [34] Ali ZahidA,ChakrabortyA,ShamiyaY,et al.Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications[J].Mater Horiz,2022,9(7):1850-1865.DOI: 10.1039/d2mh00115b.
    [35] ArtheR, ArivuoliD, RaviV. Preparation and characterization of bioactive silk fibroin/paramylon blend films for chronic wound healing[J]. Int J Biol Macromol, 2020, 154:1324-1331. DOI: 10.1016/j.ijbiomac.2019.11.010.
    [36] ZhouW, ZhaoX, ShiX, et al. Constructing tissue-engineered dressing membranes with adipose-derived stem cells and acellular dermal matrix for diabetic wound healing: a comparative study of hypoxia- or normoxia-culture modes[J]. Stem Cells Int, 2022, 2022:2976185. DOI: 10.1155/2022/2976185.
    [37] GargRK, RennertRC, DuscherD, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds[J]. Stem Cells Transl Med, 2014, 3(9):1079-1089. DOI: 10.5966/sctm.2014-0007.
    [38] MofazzalJahromi MA, Sahandi ZangabadP, Moosavi BasriSM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing[J]. Adv Drug Deliv Rev, 2018, 123:33-64. DOI: 10.1016/j.addr.2017.08.001.
    [39] SalvoJ, SandovalC. Role of copper nanoparticles in wound healing for chronic wounds: literature review[J/OL]. Burns Trauma, 2022, 10:tkab047[2022-04-07]. https://pubmed.ncbi.nlm.nih.gov/35071652/.DOI: 10.1093/burnst/tkab047.
    [40] Blanco-FernandezB, CastañoO, Mateos-TimonedaMÁ, et al. Nanotechnology approaches in chronic wound healing[J]. Adv Wound Care (New Rochelle), 2021, 10(5):234-256. DOI: 10.1089/wound.2019.1094.
    [41] LiM, DuC, GuoN, et al. Composition design and medical application of liposomes[J]. Eur J Med Chem, 2019, 164:640-653. DOI: 10.1016/j.ejmech.2019.01.007.
    [42] ChenG. Journal of Materials Chemistry B and Biomaterials Science Editor's choice web collection: "Recent advances in microfluidics"[J]. J Mater Chem B, 2021, 9(17):3606-3607. DOI: 10.1039/d1tb90057a.
    [43] Correia CarreiraS, BegumR, PerrimanAW. 3D bioprinting: the emergence of programmable biodesign[J]. Adv Healthc Mater, 2020, 9(15):e1900554. DOI: 10.1002/adhm.201900554.
    [44] MoghaddamAS, KhonakdarHA, ArjmandM, et al. Review of bioprinting in regenerative medicine: naturally derived bioinks and stem cells[J]. ACS Appl Bio Mater, 2021, 4(5):4049-4070. DOI: 10.1021/acsabm.1c00219.
    [45] ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI: 10.1016/j.biomaterials.2020.120287.
    [46] HospodiukM, DeyM, SosnoskiD, et al. The bioink: a comprehensive review on bioprintable materials[J]. Biotechnol Adv, 2017, 35(2):217-239. DOI: 10.1016/j.biotechadv.2016.12.006.
    [47] DesanlisA, AlbouyM, RousselleP, et al. Validation of an implantable bioink using mechanical extraction of human skin cells: first steps to a 3D bioprinting treatment of deep second degree burn[J]. J Tissue Eng Regen Med, 2021, 15(1):37-48. DOI: 10.1002/term.3148.
    [48] ShafieeA,CavalcantiAS,SaidyNT,et al.Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy[J].Biomaterials,2021,268:120558. DOI: 10.1016/j.biomaterials.2020.120558.
  • 加载中
计量
  • 文章访问数:  200
  • HTML全文浏览量:  28
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 网络出版日期:  2023-03-23

目录

    /

    返回文章
    返回