留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水溶性壳聚糖水凝胶对糖尿病小鼠感染全层皮肤缺损创面的作用及其机制

朱萌 陈禹州 区锦钊 李曌 黄沙 胡骁骅 鞠晓燕 田野 牛忠伟

朱萌, 陈禹州, 区锦钊, 等. 水溶性壳聚糖水凝胶对糖尿病小鼠感染全层皮肤缺损创面的作用及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 923-931. DOI: 10.3760/cma.j.cn501225-20220507-00175.
引用本文: 朱萌, 陈禹州, 区锦钊, 等. 水溶性壳聚糖水凝胶对糖尿病小鼠感染全层皮肤缺损创面的作用及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 923-931. DOI: 10.3760/cma.j.cn501225-20220507-00175.
Zhu M,Chen YZ,Ou JZ,et al.Effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice[J].Chin J Burns Wounds,2022,38(10):923-931.DOI: 10.3760/cma.j.cn501225-20220507-00175.
Citation: Zhu M,Chen YZ,Ou JZ,et al.Effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice[J].Chin J Burns Wounds,2022,38(10):923-931.DOI: 10.3760/cma.j.cn501225-20220507-00175.

水溶性壳聚糖水凝胶对糖尿病小鼠感染全层皮肤缺损创面的作用及其机制

doi: 10.3760/cma.j.cn501225-20220507-00175
基金项目: 

国家自然科学基金面上项目 52073293

中山市引进高端科研机构创新专项资金 2019AG003

详细信息
    通讯作者:

    黄沙,Email:stellarahuang@sina.com

    牛忠伟,Email:niu@mail.ipc.ac.cn

Effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice

Funds: 

General Program of National Natural Science Foundation of China 52073293

Innovation Special Foundation for High Level Research Institutions in Zhongshan 2019AG003

More Information
  • 摘要:   目的  探讨水溶性壳聚糖水凝胶对糖尿病小鼠感染全层皮肤缺损创面的作用及其机制。  方法  采用实验研究方法。采用循环冻融的方法制备由聚乙烯醇和明胶组成的对照水凝胶及由前述2种材料+水溶性壳聚糖组成的水溶性壳聚糖水凝胶。大体观察第1次冻融前后试管中2种敷料流动性,并比较12孔板中2种敷料最终形态的外观差异。取细胞株L929和HaCaT,均分别按照随机数字表法(分组方法下同)分为对照水凝胶组和水溶性壳聚糖水凝胶组,分别加入相应敷料培养24 h,采用细胞计数试剂盒8检测细胞增殖活力。取兔血红细胞悬液,分为生理盐水组、聚乙二醇辛基苯基醚(Triton X-100)组、对照水凝胶组和水溶性壳聚糖水凝胶组,分别作相应处理后孵育1 h,采用酶标仪检测红细胞的溶血程度。取24只11~14周龄雌性db/db小鼠,在其背部制作全层皮肤缺损创面并在创面处滴加耐甲氧西林金黄色葡萄球菌(MRSA)液,72 h后将小鼠分为空白对照组、磺胺嘧啶银水胶组、对照水凝胶组、水溶性壳聚糖水凝胶组,分别作相应处理。伤后0(即刻)、7、14、21 d,大体观察创面愈合情况并计算伤后14、21 d创面愈合率;伤后14 d,检测创面中MRSA浓度;伤后21 d,采用苏木精-伊红染色法对创面进行组织学分析,采用免疫荧光法检测创面中细胞CD31表达并计算其阳性百分率。取Raw264.7细胞,分为进行相应处理的白细胞介素4(IL-4)组、空白对照组、对照水凝胶组、水溶性壳聚糖水凝胶组,培养48 h,采用流式细胞仪检测细胞中CD206阳性细胞百分率。样本数均为3。对数据行独立样本t检验、单因素方差分析、重复测量方差分析、LSD检验及 Dunnett T3检验。  结果  试管中2种敷料在进行冻融前都具有一定的流动性,冻融1次后均形成半固态凝胶。12孔板中2种敷料最终形态均基本呈稳定的半透明片状,透明度差异不大。培养24 h,水溶性壳聚糖水凝胶组L929和HaCaT的细胞增殖活力均明显高于对照水凝胶组(t值分别为6.37、7.50,P<0.01)。孵育1 h,水溶性壳聚糖水凝胶组红细胞溶血程度明显低于Triton X-100组(P<0.01),而与生理盐水组及对照水凝胶组均相近(P>0.05)。伤后0 d,4组小鼠创面情况相似。伤后7 d,空白对照组与对照水凝胶组创面内部淡黄色渗出物较多,磺胺嘧啶银水胶组与水溶性壳聚糖水凝胶组创面观察到少量渗出。伤后14 d,空白对照组与对照水凝胶组创面干燥结痂,无明显上皮覆盖;磺胺嘧啶银水胶组创面痂皮脱落,可见脓性渗出物;水溶性壳聚糖水凝胶组创面基底呈淡红色,创面可观察到明显上皮覆盖。伤后14 d,水溶性壳聚糖水凝胶组创面愈合率显著高于其他3组(P值均<0.01)。伤后21 d,水溶性壳聚糖水凝胶组创面已完全闭合,其他3组创面均未完全愈合;水溶性壳聚糖水凝胶组创面愈合率显著高于其他3组(P值均<0.01)。伤后14 d,水溶性壳聚糖水凝胶组创面的MRSA浓度明显低于空白对照组(P<0.01),但与对照水凝胶组和磺胺嘧啶银水胶组均相近(P>0.05)。伤后21 d,空白对照组创面新生表皮缺损严重;对照水凝胶组创面的表皮亦有大面积缺损;磺胺嘧啶银水胶组创面尚未形成完整新生表皮;水溶性壳聚糖水凝胶组创面不仅被新生表皮完全覆盖,且新生表皮基底细胞排列规整。伤后21 d,水溶性壳聚糖水凝胶组创面中CD31阳性百分率为(2.19±0.35)%,明显高于空白对照组的(0.18±0.05)%、对照水凝胶组的(0.23±0.06)%以及磺胺嘧啶银水胶组的(0.62±0.25)%,P值均<0.01。培养48 h,水溶性壳聚糖水凝胶组Raw264.7中CD206阳性细胞百分率明显低于IL-4组(P<0.01),但明显高于空白对照组与对照水凝胶组(P<0.05或P<0.01)。  结论  水溶性壳聚糖水凝胶生物安全性好,较不含水溶性壳聚糖的对照水凝胶能诱导更高水平的巨噬细胞M2型极化,因此可以提升糖尿病小鼠MRSA感染的全层皮肤缺损创面的修复效果,并促进创面快速愈合。

     

  • 参考文献(31)

    [1] KrzyszczykP, SchlossR, PalmerA, et al. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes[J]. Front Physiol, 2018,9:419. DOI: 10.3389/fphys.2018.00419.
    [2] PlikusMV, Guerrero-JuarezCF, ItoM, et al. Regeneration of fat cells from myofibroblasts during wound healing[J]. Science, 2017,355(6326):748-752. DOI: 10.1126/science.aai8792.
    [3] MalikVS, WillettWC, HuFB. Global obesity: trends, risk factors and policy implications[J]. Nat Rev Endocrinol, 2013,9(1):13-27. DOI: 10.1038/nrendo.2012.199.
    [4] ZimmetP, AlbertiKG, MaglianoDJ, et al. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies[J]. Nat Rev Endocrinol, 2016,12(10):616-622. DOI: 10.1038/nrendo.2016.105.
    [5] EmingSA, MartinP, Tomic-CanicM. Wound repair and regeneration: mechanisms, signaling, and translation[J]. Sci Transl Med, 2014,6(265):265sr6. DOI: 10.1126/scitranslmed.3009337.
    [6] WolfSJ, MelvinWJ, GallagherK. Macrophage-mediated inflammation in diabetic wound repair[J]. Semin Cell Dev Biol, 2021,119:111-118. DOI: 10.1016/j.semcdb.2021.06.013.
    [7] VasconcelosDP, CostaM, AmaralIF, et al. Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators[J]. Biomaterials, 2015,37:116-123. DOI: 10.1016/j.biomaterials.2014.10.035.
    [8] VasconcelosDP, de Torre-MinguelaC, GomezAI, et al. 3D chitosan scaffolds impair NLRP3 inflammasome response in macrophages[J]. Acta Biomater, 2019,91:123-134. DOI: 10.1016/j.actbio.2019.04.035.
    [9] CheungRC, NgTB, WongJH, et al. Chitosan: an update on potential biomedical and pharmaceutical applications[J]. Mar Drugs, 2015,13(8):5156-5186. DOI: 10.3390/md13085156.
    [10] DashM, ChielliniF, OttenbriteRM. Chitosan-a versatile semi-synthetic polymer in biomedical applications[J]. Prog Polym Sci, 2011, 36(8):981-1014. DOI: 10.1016/j.progpolymsci.2011.02.001.
    [11] JeongYI, KimDG, JangMK, et al. Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan[J]. Carbohydr Res, 2008,343(2):282-289. DOI: 10.1016/j.carres.2007.10.025.
    [12] YangC, GaoS, Dagnæs-HansenF, et al. Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo[J]. ACS Appl Mater Interfaces, 2017,9(14):12203-12216. DOI: 10.1021/acsami.6b16556.
    [13] ZhuM, LiuP, ShiH, et al. Balancing antimicrobial activity with biological safety: bifunctional chitosan derivative for the repair of wounds with Gram-positive bacterial infections[J]. J Mater Chem B, 2018,6(23):3884-3893. DOI: 10.1039/c8tb00620b.
    [14] LuH, YuanL, YuX, et al. Recent advances of on-demand dissolution of hydrogel dressings[J/OL]. Burns Trauma, 2018,6:35[2022-05-07]. https://pubmed.ncbi.nlm.nih.gov/30619904/. DOI: 10.1186/s41038-018-0138-8.
    [15] ThuHE, ZulfakarMH, NgSF. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing[J]. Int J Pharm, 2012,434(1/2):375-383. DOI: 10.1016/j.ijpharm.2012.05.044.
    [16] FakhariA, BerklandC. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment[J]. Acta Biomater, 2013,9(7):7081-7092. DOI: 10.1016/j.actbio.2013.03.005.
    [17] LiC, YeR, BouckaertJ, et al. Flexible nanoholey patches for antibiotic-free treatments of skin infections[J]. ACS Appl Mater Interfaces, 2017,9(42):36665-36674. DOI: 10.1021/acsami.7b12949.
    [18] GurtnerGC, WernerS, BarrandonY, et al. Wound repair and regeneration[J]. Nature, 2008,453(7193):314-321. DOI: 10.1038/nature07039.
    [19] PowersJG, HighamC, BroussardK, et al. Wound healing and treating wounds: chronic wound care and management[J]. J Am Acad Dermatol, 2016,74(4):607-625; quiz 625-626. DOI: 10.1016/j.jaad.2015.08.070.
    [20] MohseniM, ShamlooA, AghababaeiZ, et al. Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: in vitro study[J]. Artif Organs, 2016,40(8):765-773. DOI: 10.1111/aor.12682.
    [21] MinJH, PatelM, KohWG. Incorporation of conductive materials into hydrogels for tissue engineering applications[J]. Polymers (Basel), 2018,10(10):1078. DOI: 10.3390/polym10101078.
    [22] HomaeigoharS, BoccacciniAR. Antibacterial biohybrid nanofibers for wound dressings[J]. Acta Biomater, 2020,107:25-49. DOI: 10.1016/j.actbio.2020.02.022.
    [23] HuT, CuiX, ZhuM, et al. 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking[J]. Bioact Mater, 2020,5(4):808-818. DOI: 10.1016/j.bioactmat.2020.06.001.
    [24] 沈括, 王许杰, 刘开拓, 等. 人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响[J].中华烧伤与创面修复杂志,2022,38(3):215-226.DOI: 10.3760/cma.j.cn501120-20201116-00477.
    [25] KharazihaM, BaidyaA, AnnabiN. Rational design of immunomodulatory hydrogels for chronic wound healing[J]. Adv Mater, 2021,33(39):e2100176. DOI: 10.1002/adma.202100176.
    [26] PeppasNA, StaufferSR. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes-a short review[J].J Control Release, 1991, 16(3): 305-310. DOI: 10.1016/0168-3659(91)90007-z.
    [27] KitaM, OguraY, HondaY, et al. Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material[J]. Graefes Arch Clin Exp Ophthalmol, 1990,228(6):533-537. DOI: 10.1007/BF00918486.
    [28] XuN, YuanY, DingL, et al. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing[J/OL]. Burns Trauma, 2022,10:tkac019[2022-05-09]. https://pubmed.ncbi.nlm.nih.gov/35910193/. DOI: 10.1093/burnst/tkac019.
    [29] ShamlooA, AghababaieZ, AfjoulH, et al. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: an in vitro, in vivo study[J]. Int J Pharm, 2021,592:120068. DOI: 10.1016/j.ijpharm.2020.120068.
    [30] BoniakowskiAE, KimballAS, JacobsBN, et al. Macrophage-mediated inflammation in normal and diabetic wound healing[J]. J Immunol, 2017,199(1):17-24. DOI: 10.4049/jimmunol.1700223.
    [31] SebastianW, Sanin DavidE, AlexanderJ, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing[J]. Cell Metabolism, 2021,33(12):2398-2414.e9. DOI: 10.1016/j.cmet.2021.10.004.
  • 1  2种水凝胶在试管中冻融1次前后流动性以及在12孔板中循环冻融后最终形态。1A、1B.分别为对照水凝胶和水溶性壳聚糖水凝胶,冻融1次后,2种溶液均由可流动状态变成不流动的半固态;1C、1D.分别为在12孔板中最终形成的对照水凝胶和水溶性壳聚糖水凝胶(培养皿中展示),二者均为稳定规则的圆形半透明片状

    注:对照水凝胶由聚乙烯醇和明胶制得,水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得

    2  4 组db/db小鼠耐甲氧西林金黄色葡萄球菌感染全层皮肤缺损创面伤后各时间点愈合情况。2A、2B、2C、2D.分别为空白对照组伤后0、7、14、21 d创面,图2E显示空白对照组14 d后创面缩小不明显;2F、2G、2H、2I.分别为对照水凝胶组伤后0、7、14、21 d 创面,图2J显示对照水凝胶组各时间点创面面积均分别较图2E有所缩小;2K、2L、2M、2N.分别为磺胺嘧啶银水胶组伤后0、7、14、21 d创面,图2O显示磺胺嘧啶银水胶组各时间点创面面积分别较图2J有所缩小;2P、2Q、2R、2S.分别为水溶性壳聚糖水凝胶组伤后0、7、14、21 d创面,图2T显示水溶性壳聚糖水凝胶组各时间点创面面积均分别较图2E、2J、2O明显缩小

    注:对照水凝胶由聚乙烯醇和明胶制得,水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得;图中圆形参照物直径为2 cm;图2E、2J、2O、2T为ImageJ图像软件处理后量化图,图中红色、橙色、黄色、绿色边界内范围均分别表示伤后0(即刻)、7、14、21 d创面面积大小

    3  4组db/db小鼠耐甲氧西林金黄色葡萄球菌感染的全层皮肤缺损创面伤后21 d组织学变化 苏木精-伊红。3A、3B、3C、3D.分别为空白对照组、对照水凝胶组、磺胺嘧啶银水胶组、水溶性壳聚糖水凝胶组创面,图3D中的新生表皮长度明显长于图3A、3B、3C,图片放大倍数为1.25;3E、3F、3G、3H.分别为图3A、3B、3C、3D局部创面放大图,从左至右显示未封闭的创缘宽度依次缩减,其中图3H所示创面已完全愈合,图片放大倍数为2.50

    注:对照水凝胶由聚乙烯醇和明胶制得,水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得;图3A、3B、3C、3D中的红色双向箭头指示新生上皮长度,图3E、3F、3G、3H中的红色单向箭头之间区域指示尚未封闭的创缘宽度

    4  4组db/db小鼠耐甲氧西林金黄色葡萄球菌感染的全层皮肤缺损创面伤后21 d CD31阳性表达情况 Alexa Fluor 594-4', 6-二脒基-2-苯基吲哚×40。4A、4B、4C、4D.分别为空白对照组、对照水凝胶组、磺胺嘧啶银水胶组、水溶性壳聚糖水凝胶组,图4D中的CD31阳性表达明显高于图4A、4B、4C

    注:对照水凝胶由聚乙烯醇和明胶制得,水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得;细胞核阳性染色为蓝色,CD31阳性细胞染色为红色(指示新生血管)

    表1  4组db/db小鼠耐甲氧西林金黄色葡萄球菌感染的全层皮肤缺损创面伤后各时间点愈合率比较(%,x¯±s

    组别样本数14 d21 d
    空白对照组336.94±3.0058.93±4.69
    对照水凝胶组318.92±4.4284.33±4.04
    磺胺嘧啶银水胶组339.71±5.0388.10±2.01
    水溶性壳聚糖胶组383.74±3.3099.76±0.24
    F140.7083.74
    P<0.001<0.001
    P1<0.001<0.001
    P2<0.001<0.001
    P3<0.0010.002
    注:对照水凝胶由聚乙烯醇和明胶制得,水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得;处理因素主效应,F=422.86,P<0.001;时间因素主效应,F=1 788.78,P<0.001;两者交互作用,F=68.88,P<0.001;F值、P值为4组间各时间点总体比较所得;P1值为空白对照组与水溶性壳聚糖水凝胶组比较所得;P2值为对照水凝胶组与水溶性壳聚糖水凝胶组比较所得;P3值为磺胺嘧啶银水胶组与水溶性壳聚糖水凝胶组比较所得
    下载: 导出CSV
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4020
  • HTML全文浏览量:  88
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07

目录

    /

    返回文章
    返回