留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丝素蛋白生物材料在创面修复中的应用研究进展

丁召召 吕强

丁召召, 吕强. 丝素蛋白生物材料在创面修复中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 973-977. DOI: 10.3760/cma.j.cn501225-20220602-00212.
引用本文: 丁召召, 吕强. 丝素蛋白生物材料在创面修复中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 973-977. DOI: 10.3760/cma.j.cn501225-20220602-00212.
Ding ZZ,Lyu Q.Research advances on the application of silk fibroin biomaterials in wound repair[J].Chin J Burns Wounds,2022,38(10):973-977.DOI: 10.3760/cma.j.cn501225-20220602-00212.
Citation: Ding ZZ,Lyu Q.Research advances on the application of silk fibroin biomaterials in wound repair[J].Chin J Burns Wounds,2022,38(10):973-977.DOI: 10.3760/cma.j.cn501225-20220602-00212.

丝素蛋白生物材料在创面修复中的应用研究进展

doi: 10.3760/cma.j.cn501225-20220602-00212
基金项目: 

国家重点研发计划 2016YFE0204400

详细信息
    通讯作者:

    吕强,Email:lvqiang78@suda.edu.cn

Research advances on the application of silk fibroin biomaterials in wound repair

Funds: 

National Key Research and Development Program of China 2016YFE0204400

More Information
  • 摘要: 丝素蛋白是一种天然纤维蛋白,具有生物相容性好、降解性能和力学性能可调、宿主炎症反应小、成本低、易制备等特性,是创面修复的理想基质材料。丝素蛋白可单独使用,也可将其同其他材料复合,制备成支架、水凝胶、膜、功能贴片和微针等不同材料,满足不同创面修复需求,调控创面修复过程,在皮肤组织工程中的应用研究急剧增加。同其他天然材料相比,丝素蛋白通过改善不同时期的细胞增殖、迁移和分化行为来促进组织再生和创面修复,表现出不同维度的独特优势。综合近年来丝素蛋白创面修复材料研究的进展,该文重点阐述丝素蛋白及其复合材料在创面修复中的作用机制和应用前景。

     

  • 参考文献(38)

    [1] 魏亚婷,吴军. 创面修复中的皮肤组织再生研究进展[J]. 中华烧伤杂志,2021,37(7): 670-674. DOI: 10.3760/cma.j.cn501120-20200604-00296.
    [2] DingXT, TangQH, XuZY, et al. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice[J/OL]. Burns Trauma, 2022, 10: tkac014[2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/35611318/. DOI: 10.1093/burnst/tkac014.
    [3] ZhangM, ZhaoX. Alginate hydrogel dressings for advanced wound management[J]. Int J Biol Macromol, 2020, 162: 1414-1428. DOI: 10.1016/j.ijbiomac.2020.07.311.
    [4] MbeseZ,AlvenS,AderibigbeBA.Collagen-based nanofibers for skin regeneration and wound dressing applications[J].Polymers (Basel),2021,13(24):4368.DOI: 10.3390/polym13244368.
    [5] MoeiniA, PedramP, MakvandiP, et al. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review[J]. Carbohydr Polym, 2020, 233: 115839. DOI: 10.1016/j.carbpol.2020.115839.
    [6] GomesS, LeonorIB, ManoJF, et al. Natural and genetically engineered proteins for tissue engineering[J]. Prog Polym Sci, 2012, 37(1): 1-17. DOI: 10.1016/j.progpolymsci.2011.07.003.
    [7] SunWZ, GregoryDA, TomehMA, et al. Silk fibroin as a functional biomaterial for tissue engineering[J].Int J Mol Sci,2021,22(3):1499.DOI: 10.3390/ijms22031499.
    [8] HollandC,NumataK,Rnjak-KovacinaJ,et al.The biomedical use of silk: past, present, future[J].Adv Healthc Mater,2019,8(1):e1800465.DOI: 10.1002/adhm.201800465.
    [9] FanTY, DanielsR. Preparation and characterization of electrospun polylactic acid (PLA) fiber loaded with birch bark triterpene extract for wound dressing[J]. AAPS PharmSciTech, 2021, 22(6): 205. DOI: 10.1208/s12249-021-02081-z.
    [10] LiuJH, YanLW, YangW, et al. Controlled-release neurotensin-loaded silk fibroin dressings improve wound healing in diabetic rat model[J]. Bioact Mater, 2019, 4: 151-159. DOI: 10.1016/j.bioactmat.2019.03.001.
    [11] YinCJ, HanXS, LuQY, et al. Rhein incorporated silk fibroin hydrogels with antibacterial and anti-inflammatory efficacy to promote healing of bacteria-infected burn wounds[J]. Int J Biol Macromol, 2022, 201: 14-19. DOI: 10.1016/j.ijbiomac.2021.12.156.
    [12] SafonovaL, BobrovaM, EfimovA, et al. Silk fibroin/spidroin electrospun scaffolds for full-thickness skin wound healing in rats[J]. Pharmaceutics, 2021, 13(10): 1704. DOI: 10.3390/pharmaceutics13101704.
    [13] DingZZ, ZhouML, ZhouZY, et al. Injectable silk nanofiber hydrogels for sustained release of small-molecule drugs and vascularization[J]. ACS Biomater Sci Eng, 2019, 5(8): 4077-4088. DOI: 10.1021/acsbiomaterials.9b00621.
    [14] LiuJ, HuangR, LiG, et al. Generation of nano-pores in silk fibroin films using silk nanoparticles for full-thickness wound healing[J]. Biomacromolecules, 2021, 22 (2): 546-556. DOI: 10.1021/acs.biomac.0c01411.
    [15] GaoBB, GuoMZ, LyuK, et al. Intelligent silk fibroin based microneedle dressing (i-SMD)[J]. Adv Funct Mater, 2021, 31(3): 2006839. DOI: 10.1002/adfm.202006839.
    [16] LuGZ, DingZZ, WeiYY, et al. Anisotropic biomimetic silk scaffolds for improved cell migration and healing of skin wounds[J]. ACS Appl Mater Interfaces, 2018, 10(51): 44314-44323. DOI: 10.1021/acsami.8b18626.
    [17] HanHY, NingHY, LiuSS, et al. Silk biomaterials with vascularization capacity[J]. Adv Funct Mater, 2016, 26(3): 421-436. DOI: 10.1002/adfm.201504160.
    [18] FarokhiM, MottaghitalabF, FatahiY, et al. Overview of silk fibroin use in wound dressings[J]. Trends Biotechnol, 2018, 36(9): 907-922. DOI: 10.1016/j.tibtech.2018.04.004.
    [19] ParkYR,SultanMT,ParkHJ,et al.NF-κB signaling is key in the wound healing processes of silk fibroin[J].Acta Biomater,2018,67:183-195.DOI: 10.1016/j.actbio.2017.12.006.
    [20] ZhaoX, WuH, GuoBL, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing[J]. Biomaterials, 2017, 122: 34-47. DOI: 10.1016/j.biomaterials.2017.01.011.
    [21] LuXH, DingZZ, XuFR, et al. Subtle regulation of scaffold stiffness for the optimized control of cell behavior [J]. ACS Appl Bio Mater, 2019, 2(7): 3108-3119. DOI: 10.1021/acsabm.9b00445.
    [22] SelvarajS, FathimaNN. Fenugreek incorporated silk fibroin nanofibers-a potential antioxidant scaffold for enhanced wound healing[J]. ACS Appl Mater Interfaces, 2017, 9(7): 5916-5926. DOI: 10.1021/acsami.6b16306.
    [23] ChenMM, TianJ, LiuY, et al. Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing[J]. Chem Eng J, 2019, 373: 413-424. DOI: 10.1016/j.cej.2019.05.043.
    [24] DingZZ, ZhangYH, GuoP, et al. Injectable desferrioxamine-laden silk nanofiber hydrogels for accelerating diabetic wound healing[J]. ACS Biomater Sci Eng, 2021, 7(3): 1147-1158. DOI: 10.1021/acsbiomaterials.0c01502.
    [25] TianMP, ZhangAD, YaoYX, et al. Mussel-inspired adhesive and polypeptide-based antibacterial thermo-sensitive hydroxybutyl chitosan hydrogel as BMSCs 3D culture matrix for wound healing[J]. Carbohydr Polym, 2021, 261: 117878. DOI: 10.1016/j.carbpol.2021.117878.
    [26] AyukSM, AbrahamseH, HoureldNN. The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation[J]. J Diabetes Res, 2016, 2016:2897656. DOI: 10.1155/2016/2897656.
    [27] ZhengX, DingZZ, ChengWN, et al. Microskin-inspired injectable MSC-laden hydrogels for scarless wound healing with hair follicles[J]. Adv Healthc Mater, 2020, 9(10): e2000041. DOI: 10.1002/adhm.202000041.
    [28] QianZY, WangHP, BaiYT, et al. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release[J]. ACS Appl Mater Interfaces, 2020, 12(50): 55659-55674. DOI: 10.1021/acsami.0c17142.
    [29] ZhangW, ChenLK, ChenJL, et al. Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial[J]. Adv Healthc Mater, 2017, 6(10): 1700121. DOI: 10.1002/adhm.201700121.
    [30] ZhuYN, ZhangJM, SongJY, et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment[J]. Adv Funct Mater, 2019, 30(6): 1905493. DOI: 10.1002/adfm.201905493.
    [31] ChanmugamA, LangemoD, ThomasonK, et al. Relative temperature maximum in wound infection and inflammation as compared with a control subject using long-wave infrared thermography[J]. Adv Skin Wound Care, 2017, 30(9): 406-414. DOI: 10.1097/01.ASW.0000522161.13573.62.
    [32] KhalidA, BaiDB, AbrahamAN, et al. Electrospun nanodiamond-silk fibroin membranes: a multifunctional platform for biosensing and wound-healing applications[J]. ACS Appl Mater Interfaces, 2020, 12(43): 48408-48419. DOI: 10.1021/acsami.0c15612.
    [33] JuJ, HuN, CairnsDM, et al. Photo-cross-linkable, insulating silk fibroin for bioelectronics with enhanced cell affinity[J]. Proc Natl Acad Sci U S A, 2020, 117(27): 15482-15489. DOI: 10.1073/pnas.2003696117.
    [34] LiangYP, ZhaoX, HuTL, et al. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin[J]. J Colloid Interface Sci, 2019, 556: 514-528. DOI: 10.1016/j.jcis.2019.08.083.
    [35] JiaZR, GongJL, ZengY, et al. Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes[J]. Adv Funct Mater, 2021, 31(19): 2010461. DOI: 10.1002/adfm.202010461.
    [36] ZhuJJ, DongLY, DuHY, et al. 5-Aminolevulinic acid-loaded hyaluronic acid dissolving microneedles for effective photodynamic therapy of superficial tumors with enhanced long-term stability[J]. Adv Healthc Mater, 2019, 8(22): e1900896. DOI: 10.1002/adhm.201900896.
    [37] HeZZ, ElbazA, GaoBB, et al. Disposable morpho menelaus based flexible microfluidic and electronic sensor for the diagnosis of neurodegenerative disease[J]. Adv Healthc Mater, 2018, 7(5): 1701306. DOI: 10.1002/adhm.201701306.
    [38] ZhangQ, ShiL, HeH, et al. Down-regulating scar formation by microneedles directly via a mechanical communication pathway[J]. ACS Nano, 2022, 16(7):10163-10178.DOI: 10.1021/acsnano.1c11016.
  • 加载中
计量
  • 文章访问数:  528
  • HTML全文浏览量:  217
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 网络出版日期:  2022-10-24

目录

    /

    返回文章
    返回