留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物材料构建人工真皮支架的研究进展

陈继秋 朱世辉

陈继秋, 朱世辉. 基于生物材料构建人工真皮支架的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 968-972. DOI: 10.3760/cma.j.cn501225-20220606-00221.
引用本文: 陈继秋, 朱世辉. 基于生物材料构建人工真皮支架的研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 968-972. DOI: 10.3760/cma.j.cn501225-20220606-00221.
Chen JQ,Zhu SH.Research advances on the construction of artificial dermal scaffolds based on biomaterials[J].Chin J Burns Wounds,2022,38(10):968-972.DOI: 10.3760/cma.j.cn501225-20220606-00221.
Citation: Chen JQ,Zhu SH.Research advances on the construction of artificial dermal scaffolds based on biomaterials[J].Chin J Burns Wounds,2022,38(10):968-972.DOI: 10.3760/cma.j.cn501225-20220606-00221.

基于生物材料构建人工真皮支架的研究进展

doi: 10.3760/cma.j.cn501225-20220606-00221
基金项目: 

国家重点研发计划 2019YFA0110603

详细信息
    通讯作者:

    朱世辉,Email:doctorzhushihui@163.com

Research advances on the construction of artificial dermal scaffolds based on biomaterials

Funds: 

National Key Research and Development Program of China 2019YFA0110603

More Information
  • 摘要: 在创面修复领域中,无瘢痕愈合以及完整重建皮肤功能是临床及基础研究面临的重大挑战。目前,已有多种人工真皮支架被用于临床创面修复,以解决组织缺损导致的皮肤结构失调等问题。皮肤组织工程研究中用于制作人工真皮支架的生物材料主要包括天然生物材料、生物合成材料以及有机高分子材料这3类。该文综述了生物材料的生物相容性、生物活性、可降解性及生物材料对创面愈合的作用,并概述了基于生物材料、创面愈合细胞及相关细胞因子的人工真皮支架构建策略。

     

  • 参考文献(40)

    [1] 中国老年医学学会烧创伤分会.天然真皮基质应用于创面修复的全国专家共识(2020版)[J].中华烧伤杂志,2020,36(10):895-900.DOI: 10.3760/cma.j.cn501120-20200308-00134.
    [2] Rahmani Del BakhshayeshA,AnnabiN,KhalilovR,et al.Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering[J].Artif Cells Nanomed Biotechnol,2018,46(4):691-705.DOI: 10.1080/21691401.2017.1349778.
    [3] CrawfordL,WyattM,BryersJ,et al.Biocompatibility evolves: phenomenology to toxicology to regeneration[J].Adv Healthc Mater,2021,10(11):e2002153.DOI: 10.1002/adhm.202002153.
    [4] SunG.Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing[J].Adv Healthc Mater,2017,6(23):1700659.DOI: 10.1002/adhm.201700659.
    [5] LiY,XiaoY,LiuC.The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering[J].Chem Rev,2017,117(5):4376-4421.DOI: 10.1021/acs.chemrev.6b00654.
    [6] IorioV,TroughtonLD,HamillKJ.Laminins: roles and utility in wound repair[J].Adv Wound Care (New Rochelle),2015,4(4):250-263.DOI: 10.1089/wound.2014.0533.
    [7] KangHW,LeeSJ,KoIK,et al.A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J].Nat Biotechnol,2016,34(3):312-319.DOI: 10.1038/nbt.3413.
    [8] HassanAA,RadwanHA,AbdelaalSA,et al.Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: morphology, cell adhesion, and antibacterial activity[J].Int J Pharm,2021,593:120143.DOI: 10.1016/j.ijpharm.2020.120143.
    [9] WeiS,XuP,YaoZ,et al.A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes[J].Acta Biomater,2021,124:205-218.DOI: 10.1016/j.actbio.2021.01.046.
    [10] 中国老年医学学会烧创伤分会.胶原类创面材料临床应用全国专家共识(2018版)[J].中华烧伤杂志,2018,34(11):766-769.DOI: 10.3760/cma.j.issn.1009-2587.2018.11.009.
    [11] HosseiniM,MozafariM.Cerium oxide nanoparticles: recent advances in tissue engineering[J].Materials (Basel),2020,13(14):3072.DOI: 10.3390/ma13143072.
    [12] FukanoY,UsuiML,UnderwoodRA,et al.Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice[J].J Biomed Mater Res A,2010,94(4):1172-1186.DOI: 10.1002/jbm.a.32798.
    [13] ShevchenkoRV,EemanM,RowshanravanB,et al.The in vitro characterization of a gelatin scaffold, prepared by cryogelation and assessed in vivo as a dermal replacement in wound repair[J].Acta Biomater,2014,10(7):3156-3166.DOI: 10.1016/j.actbio.2014.03.027.
    [14] HuY,WangJ,LiX,et al.Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions[J].J Colloid Interface Sci,2019,545:104-115.DOI: 10.1016/j.jcis.2019.03.024.
    [15] YangY,RitchieAC,EverittNM.Using type III recombinant human collagen to construct a series of highly porous scaffolds for tissue regeneration[J].Colloids Surf B Biointerfaces,2021,208:112139.DOI: 10.1016/j.colsurfb.2021.112139.
    [16] QaziTH,TytgatL,DubruelP,et al.Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects[J].ACS Biomater Sci Eng,2019,5(10):5348-5358.DOI: 10.1021/acsbiomaterials.9b00843.
    [17] ChoiDJ,ParkS,GuKB,et al.Effect of the pore size in a 3D bioprinted gelatin scaffold on fibroblast proliferation[J].Journal of Industrial and Engineering Chemistry,2018:S1226086X18303952.DOI: 10.1016/j.jiec.2018.07.013.
    [18] XiaH,ChenQ,FangY,et al.Directed neurite growth of rat dorsal root ganglion neurons and increased colocalization with Schwann cells on aligned poly(methyl methacrylate) electrospun nanofibers[J].Brain Res,2014,1565:18-27.DOI: 10.1016/j.brainres.2014.04.002.
    [19] HejazianLB,EsmaeilzadeB,Moghanni GhoroghiF,et al.The role of biodegradable engineered nanofiber scaffolds seeded with hair follicle stem cells for tissue engineering[J].Iran Biomed J,2012,16(4):193-201.
    [20] FengB,DuanH,FuW,et al.Effect of inhomogeneity of the electrospun fibrous scaffolds of gelatin/polycaprolactone hybrid on cell proliferation[J].J Biomed Mater Res A,2015,103(2):431-438.DOI: 10.1002/jbm.a.35184.
    [21] TamayolA,AkbariM,AnnabiN,et al.Fiber-based tissue engineering: progress, challenges, and opportunities[J].Biotechnol Adv,2013,31(5):669-687.DOI: 10.1016/j.biotechadv.2012.11.007.
    [22] FreemanR,HanM,ÁlvarezZ,et al.Reversible self-assembly of superstructured networks[J].Science,2018,362(6416):808-813.DOI: 10.1126/science.aat6141.
    [23] NorouziM,BoroujeniSM,OmidvarkordshouliN,et al.Advances in skin regeneration: application of electrospun scaffolds[J].Adv Healthc Mater,2015,4(8):1114-1133.DOI: 10.1002/adhm.201500001.
    [24] ShevchenkoRV,EemanM,RowshanravanB,et al.The in vitro characterization of a gelatin scaffold, prepared by cryogelation and assessed in vivo as a dermal replacement in wound repair[J].Acta Biomater,2014,10(7):3156-3166.DOI: 10.1016/j.actbio.2014.03.027.
    [25] SampsonSL,SaraivaL,GustafssonK,et al.Cell electrospinning: an in vitro and in vivo study[J].Small,2014,10(1):78-82.DOI: 10.1002/smll.201300804.
    [26] KhandakerM,NomhwangeH,ProgriH,et al.Evaluation of polycaprolactone electrospun nanofiber-composites for artificial skin based on dermal fibroblast culture[J].Bioengineering (Basel),2022,9(1):19.DOI: 10.3390/bioengineering9010019.
    [27] AmirsadeghiA,KhorramM,HashemiSS.Preparation of multilayer electrospun nanofibrous scaffolds containing soluble eggshell membrane as potential dermal substitute[J].J Biomed Mater Res A,2021,109(10):1812-1827.DOI: 10.1002/jbm.a.37174.
    [28] DhandayuthapaniB,YoshidaY,MaekawaT,et al.Polymeric scaffolds in tissue engineering application: a review[J].International Journal of Polymer Science,2011:609-618.DOI: 10.1155/2011/290602.
    [29] GilmartinDJ,AlexalineMM,ThrasivoulouC,et al.Integration of scaffolds into full-thickness skin wounds: the connexin response[J].Adv Healthc Mater,2013,2(8):1151-1160.DOI: 10.1002/adhm.201200357.
    [30] GleadallA,VisscherD,YangJ,et al.Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance[J/OL].Burns Trauma,2018,6:19[2022-06-06]. https://pubmed.ncbi.nlm.nih.gov/29988731/.DOI: 10.1186/s41038-018-0121-4.
    [31] 盛嘉隽,刘功成,李海航,等.皮肤三维打印的研究进展[J].中华烧伤杂志,2017,33(1):27-30.DOI: 10.3760/cma.j.issn.1009-2587.2017.01.007.
    [32] ShafieeA.Design and fabrication of three-dimensional printed scaffolds for cancer precision medicine[J].Tissue Eng Part A,2020,26(5/6):305-317.DOI: 10.1089/ten.TEA.2019.0278.
    [33] DattaP,DhawanA,YuY,et al.Bioprinting of osteochondral tissues: a perspective on current gaps and future trends[J].Int J Bioprint,2017,3(2):007.DOI: 10.18063/IJB.2017.02.007.
    [34] ShieMY,LeeJJ,HoCC,et al.Effects of gelatin methacrylate bio-ink concentration on mechano-physical properties and human dermal fibroblast behavior[J].Polymers (Basel),2020,12(9):1930.DOI: 10.3390/polym12091930.
    [35] Ibañez RIR,do Amaral RJFC,ReisRL,et al.3D-printed gelatin methacrylate scaffolds with controlled architecture and stiffness modulate the fibroblast phenotype towards dermal regeneration[J].Polymers (Basel),2021,13(15):2510.DOI: 10.3390/polym13152510.
    [36] YuanX,LiL,LiuH,et al.Strategies for improving adipose-derived stem cells for tissue regeneration[J/OL].Burns Trauma,2022,10:tkac028[2022-06-06].https://pubmed.ncbi.nlm.nih.gov/35992369/.DOI: 10.1093/burnst/tkac028.
    [37] MamsenFP,Munthe-FogL,KringMKM,et al.Differences of embedding adipose-derived stromal cells in natural and synthetic scaffolds for dermal and subcutaneous delivery[J].Stem Cell Res Ther,2021,12(1):68.DOI: 10.1186/s13287-020-02132-5.
    [38] PaganelliA,TarentiniE,BenassiL,et al.Use of confocal microscopy imaging for in vitro assessment of adipose-derived mesenchymal stromal cells seeding on acellular dermal matrices: 3D reconstruction based on collagen autofluorescence[J].Skin Res Technol,2022,28(1):133-141.DOI: 10.1111/srt.13103.
    [39] YangHY,FierroF,SoM,et al.Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice[J].Stem Cells Transl Med,2020,9(11):1353-1364.DOI: 10.1002/sctm.19-0380.
    [40] 张鹏多肽纳米纤维水凝胶负载富血小板血浆促进创面修复的研究苏州苏州大学2020DOI:10.27351/d.cnki.gszhu.2020.003423

    张鹏.多肽纳米纤维水凝胶负载富血小板血浆促进创面修复的研究[D].苏州:苏州大学,2020.DOI:10.27351/d.cnki.gszhu.2020.003423.

  • 加载中
计量
  • 文章访问数:  323
  • HTML全文浏览量:  215
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 网络出版日期:  2022-10-24

目录

    /

    返回文章
    返回