留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含人脐血来源富血小板血浆的三维生物打印墨水在裸鼠全层皮肤缺损治疗中的应用

宋薇 李曌 朱世钧 张超 姚斌 孔毅 梁莉婷 恩和吉日嘎拉 付小兵 黄沙

宋薇, 李曌, 朱世钧, 等. 含人脐血来源富血小板血浆的三维生物打印墨水在裸鼠全层皮肤缺损治疗中的应用[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 905-913. DOI: 10.3760/cma.j.cn501225-20220618-00243.
引用本文: 宋薇, 李曌, 朱世钧, 等. 含人脐血来源富血小板血浆的三维生物打印墨水在裸鼠全层皮肤缺损治疗中的应用[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 905-913. DOI: 10.3760/cma.j.cn501225-20220618-00243.
Song W,Li Z,Zhu SJ,et al.Application of three-dimensional bioprinting ink containing platelet-rich plasma derived from human umbilical cord blood in the treatment of full-thickness skin defects in nude mice[J].Chin J Burns Wounds,2022,38(10):905-913.DOI: 10.3760/cma.j.cn501225-20220618-00243.
Citation: Song W,Li Z,Zhu SJ,et al.Application of three-dimensional bioprinting ink containing platelet-rich plasma derived from human umbilical cord blood in the treatment of full-thickness skin defects in nude mice[J].Chin J Burns Wounds,2022,38(10):905-913.DOI: 10.3760/cma.j.cn501225-20220618-00243.

含人脐血来源富血小板血浆的三维生物打印墨水在裸鼠全层皮肤缺损治疗中的应用

doi: 10.3760/cma.j.cn501225-20220618-00243
基金项目: 

国家重点研发计划 2017YFC1103303

国家自然科学基金青年科学基金项目 32000969

上海王正国创伤医学发展基金会生长因子复兴计划 SZYZ-TR-03

详细信息
    通讯作者:

    黄沙,Email:stellarahuang@sina.com

Application of three-dimensional bioprinting ink containing platelet-rich plasma derived from human umbilical cord blood in the treatment of full-thickness skin defects in nude mice

Funds: 

National Key Research and Development Program of China 2017YFC1103303

Youth Science Foundation Project of National Natural Science Foundation of China 32000969

Shanghai Wang Zhengguo Foundation for Traumatic Medicine Growth Factor Rejuvenation Plan SZYZ-TR-03

More Information
  • 摘要:   目的  探讨含人脐血来源富血小板血浆(HUCB-PRP)的海藻酸钠-明胶(AG)生物墨水(称为HUCB-PRP-AG生物墨水)的可打印性能和细胞相容性,及该生物墨水的三维打印组织治疗裸鼠全层皮肤缺损创面的效果。  方法  采用实验研究方法。制备含体积分数2.5%、5.0%、10.0%HUCB-PRP的HUCB-PRP-AG生物墨水,分别命名为1P-AG、2P-AG、4P-AG。取AG、1P-AG、2P-AG、4P-AG,观察室温下外观,采用旋转流变仪检测黏度、储能模量和损耗模量。利用以上4种生物墨水分别进行三维生物打印并观察打印组织外观(后续使用交联后打印组织),将4种打印组织分别与人脐静脉内皮细胞(HUVEC)在Transwell小室内用HUVEC专用培养基共培养24 h,采用细胞计数试剂盒8检测细胞增殖水平(样本数为3);将4种打印组织分别用DMEM培养基培养12、24、48 h,进行干燥称重并计算降解率(样本数为3);将1P-AG、2P-AG、4P-AG打印组织分别用磷酸盐缓冲液培养0.5、24.0、48.0 h,采用酶联免疫吸附测定法检测培养上清液中血管内皮生长因子(VEGF)的表达(样本数为5)。取16只6~8周龄雌性BALB/c-NU裸鼠建立背部全层皮肤缺损创面模型,分为创面仅覆盖医用水胶体敷料的常规对照组和另予HUCB-PRP滴加的HUCB-PRP组、AG打印组织覆盖的AG组、4P-AG打印组织覆盖的4P-AG组(每组4只),观察每组3只裸鼠伤后4、8、14 d创面愈合情况并计算创面愈合率;取每组剩余裸鼠伤后8 d创面组织,行苏木精-伊红染色后观察组织病理学改变,行免疫组织化学染色后观察CD31阳性新生血管情况。对数据行重复测量方差分析、LSD检验及Bonferroni校正。  结果  在室温下,AG、1P-AG、2P-AG、4P-AG均呈半透明液态;AG为淡黄色,1P-AG、2P-AG、4P-AG均为淡红色但颜色依次逐渐加深。在温度10 ℃和剪切率0.1~10.0 s-1范围内,AG、1P-AG、2P-AG、4P-AG的黏度均随着剪切率的增加而减小;在温度10 ℃和角频率1~100 rad/s范围内,4种生物墨水的储能模量均大于损耗模量。4种生物墨水打印组织的分辨率与形态均相近。与1P-AG、2P-AG、4P-AG打印组织共培养24 h的HUVEC增殖水平分别为0.885±0.030、1.126±0.032、1.156±0.045,均明显高于与AG打印组织共培养的HUVEC的0.712±0.019(P<0.01);与2P-AG、4P-AG打印组织共培养24 h的HUVEC增殖水平均明显高于与1P-AG打印组织共培养的HUVEC(P<0.01)。1P-AG、2P-AG、4P-AG打印组织培养12、24、48 h的降解率均明显高于AG打印组织(P<0.01);2P-AG、4P-AG打印组织培养24、48 h的降解率均明显高于1P-AG打印组织(P<0.01);4P-AG打印组织培养12 h的降解率明显高于1P-AG打印组织(P<0.01),培养24、48 h的降解率均明显高于2P-AG打印组织(P<0.01)。培养0.5、24.0、48.0 h,2P-AG打印组织培养上清液中VEGF表达量均明显高于1P-AG打印组织(P<0.01),1P-AG和2P-AG打印组织培养上清液中VEGF表达量均明显低于4P-AG打印组织(P<0.01)。常规对照组与HUCB-PRP组裸鼠伤后8 d创面较伤后4 d干燥且缩小,HUCB-PRP组裸鼠伤后14 d创面较常规对照组缩小且无结痂;AG组、4P-AG组裸鼠伤后4 d创面上打印组织明显降解且创面无明显渗出,伤后8 d创面明显上皮化且缩小,伤后14 d创面无结痂;4P-AG组裸鼠伤后14 d创面完全上皮化。与常规对照组比较,AG组裸鼠伤后4 d创面愈合率明显降低(P<0.05),HUCB-PRP组、4P-AG组裸鼠伤后各时间点及AG组裸鼠伤后8、14 d创面愈合率均明显升高(P<0.01);与HUCB-PRP组比较,AG组裸鼠伤后4、8 d及4P-AG组裸鼠伤后4 d创面愈合率均明显降低(P<0.01),AG组裸鼠伤后14 d及4P-AG组裸鼠伤后8、14 d创面愈合率均明显升高(P<0.01);4P-AG组裸鼠伤后各时间点创面愈合率均明显高于AG组(P<0.01)。伤后8 d,常规对照组裸鼠创面组织可见大量炎症细胞浸润、少量新生微血管以及少量CD31阳性新生血管,HUCB-PRP组裸鼠创面组织可见大量炎症细胞浸润、丰富新生微血管以及较多CD31阳性新生血管,AG组裸鼠创面组织可见轻度炎症浸润、少量新生微血管以及少量CD31阳性新生血管,4P-AG组裸鼠创面组织可见轻度炎症浸润、大量新生微血管以及大量CD31阳性新生血管。  结论  HUCB-PRP-AG生物墨水具备良好的可打印性能和细胞相容性,其三维打印组织可促进裸鼠全层皮肤缺损创面血管化,加速创面愈合。

     

  • 1  4种生物墨水的表征和流变性能与储能模量/损耗模量比较。1A.大体外观图,室温下均为半透明液态;1B.10 ℃下黏度-剪切率曲线;1C.10 ℃下储能模量/损耗模量-角频率曲线

    注:图1A中1、2、3、4与图1B、1C中红色、紫色、蓝色、绿色线均分别指示海藻酸钠-明胶(AG)和含体积分数2.5%、5.0%、10.0%人脐血来源富血小板血浆的AG生物墨水1P-AG、2P-AG、4P-AG;图1C中上方4条虚线为储能模量,下方4条虚线为损耗模量;图1C为经过lg 处理的数据形成的描记图,坐标轴数据为未经lg处理的原始数据

    2  4种生物墨水的三维生物打印组织外观相近。2A、2B、2C、2D.分别为AG、1P-AG、2P-AG、4P-AG打印组织

    注:AG为海藻酸钠-明胶,1P-AG、2P-AG、4P-AG分别为含体积分数2.5%、5.0%、10.0%人脐血来源富血小板血浆的AG生物墨水

    3  4组裸鼠全层皮肤缺损创面伤后各时间点愈合情况。3A、3B、3C与3D、3E、3F.分别为常规对照组与HUCB-PRP组伤后4、8、14 d创面,图3B、3E创面分别较图3A、3D创面干燥且缩小,图3F创面明显小于图3C且无结痂;3G、3H、3I与3J、3K、3L.分别为AG组与4P-AG组伤后4、8、14 d创面,图3G与3J创面上打印组织明显降解且创面无明显渗出,图3H与3K创面上皮化明显(乳白色区域)且图3K创面较图3H与3J明显缩小,图3I创面无结痂且基底鲜红,图3L创面上皮化完全且无结痂

    注:4组均用医用水胶体敷料覆盖创面,人脐血来源富血小板血浆(HUCB-PRP)组、海藻酸钠-明胶(AG)组、4P-AG组另分别行HUCB-PRP滴加、AG打印组织覆盖、4P-AG打印组织覆盖,4P-AG为含体积分数10.0% HUCB-PRP的AG生物墨水

    4  4组裸鼠全层皮肤缺损创面伤后8 d组织病理学变化与CD31阳性新生血管(棕色)情况。4A、4B、4C、4D.分别为常规对照组、HUCB-PRP组、AG组、4P-AG组创面组织,图4A创面基底有大量炎症细胞浸润和少量新生微血管,图4B创面基底可见大量炎症细胞浸润和丰富新生微血管,图4C创面基底可见轻度炎症浸润和少量新生微血管,图4D创面基底可见轻度炎症浸润和大量新生微血管 苏木精-伊红(HE)×50;4E、4F、4G、4H.分别为图4A、4B、4C、4D中方框处放大图,可明显观察到新生微血管情况 HE×400;4I、4J、4K、4L.分别为常规对照组、HUCB-PRP组、AG组、4P-AG组创面组织,图4I和4K均有少量CD31阳性新生血管,图4J有较多CD31阳性新生血管,图4L有大量CD31阳性新生血管 CD31-二氨基联苯胺×400

    注:4组均用医用水胶体敷料覆盖创面,人脐血来源富血小板血浆(HUCB-PRP)组、海藻酸钠-明胶(AG)组、4P-AG组另分别行HUCB-PRP滴加、AG打印组织覆盖、4P-AG打印组织覆盖,4P-AG为含体积分数10.0% HUCB-PRP的AG生物墨水;图4A~4D中D为创缘真皮组织,E为创缘表皮组织,N/E为新生表皮组织,N/D为新生真皮组织,黑色虚线为N、E、N/E与N/D的分界线

    表1  4种生物墨水三维打印组织培养各时间点降解率比较(%,x¯±s

    材料名称样本数12 h24 h48 h
    AG打印组织31.23±0.073.57±0.127.47±0.06
    1P-AG打印组织31.53±0.06a4.07±0.06a7.77±0.06a
    2P-AG打印组织31.63±0.06a4.27±0.06ab8.07±0.06ab
    4P-AG打印组织31.77±0.06ab4.53±0.06abc8.90±0.10abc
    注:AG为海藻酸钠-明胶,1P-AG、2P-AG、4P-AG分别为含体积分数2.5%、5.0%、10.0%人脐血来源富血小板血浆的AG生物墨水;处理因素主效应,F=41 941.00,P<0.001;时间因素主效应,F=316.70,P<0.001;两者交互作用,F=63.69,P<0.001;与AG打印组织比较,aP<0.01;与1P-AG打印组织比较,bP<0.01;与2P-AG打印组织比较,cP<0.01
    下载: 导出CSV

    表2  3种生物墨水三维打印组织培养各时间点上清液中VEGF的表达比较(pg/mL,x¯±s

    材料名称样本数0.5 h24.0 h48.0 h
    1P-AG打印组织529.6±0.6185.4±1.8199.9±1.0
    2P-AG打印组织5117.3±1.0a387.4±3.2a408.0±1.6a
    4P-AG打印组织5314.2±2.6ab547.2±3.3ab569.4±1.5ab
    注:AG为海藻酸钠-明胶,1P-AG、2P-AG、4P-AG分别为含体积分数2.5%、5.0%、10.0%人脐血来源富血小板血浆的AG生物墨水;处理因素主效应,F=14 613.00,P<0.001;时间因素主效应,F=66 236.00,P<0.001;两者交互作用,F=1 275.00,P<0.001;与1P-AG打印组织比较,aP<0.01;与2P-AG打印组织比较,bP<0.01
    下载: 导出CSV

    表3  4组裸鼠全层皮肤缺损创面伤后各时间点愈合率比较(%,x¯±s

    组别样本数4 d8 d14 d
    常规对照组310.2±0.852.3±1.271.3±0.8
    HUCB-PRP组335.4±1.7a72.3±0.3a85.8±0.5a
    AG组36.7±1.0bc60.4±1.1ac89.6±0.6ac
    4P-AG组324.2±2.9acd78.3±0.8acd98.6±0.8acd
    注:4组均用医用水胶体敷料覆盖创面,人脐血来源富血小板血浆(HUCB-PRP)组、海藻酸钠-明胶(AG)组、4P-AG组另分别行HUCB-PRP滴加、AG打印组织覆盖、4P-AG打印组织覆盖,4P-AG为含体积分数10.0% HUCB-PRP的AG生物墨水;处理因素主效应,F=9 258.00,P<0.001;时间因素主效应,F=650.70,P<0.001;两者交互作用,F=105.10,P<0.001;与常规对照组比较,aP<0.01,bP<0.05;与HUCB-PRP组比较,cP<0.01;与AG组,dP<0.01
    下载: 导出CSV
  • [1] ChenS,ShiY,LuoY,et al.Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery[J].Colloids Surf B Biointerfaces,2019,179:121-127.DOI: 10.1016/j.colsurfb.2019.03.063.
    [2] da SilvaLP,ReisRL,CorreloVM,et al.Hydrogel-based strategies to advance therapies for chronic skin wounds[J].Annu Rev Biomed Eng,2019,21:145-169.DOI: 10.1146/annurev-bioeng-060418-052422.
    [3] HuH,XuFJ.Rational design and latest advances of polysaccharide-based hydrogels for wound healing[J].Biomater Sci,2020,8(8):2084-2101.DOI: 10.1039/d0bm00055h.
    [4] XiaS,WengT,JinR,et al.Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds[J/OL].Burns Trauma,2022,10:tkac001[2022-06-18].https://pubmed.ncbi.nlm.nih.gov/35291229/.DOI: 10.1093/burnst/tkac001.
    [5] YaoB,WangR,WangY,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094.
    [6] 张超,李曌,宋薇,等.含人脂肪来源蛋白复合物的三维生物打印墨水的创面修复效应初探[J].中华烧伤杂志,2021,37(11):1011-1023.DOI: 10.3760/cma.j.cn501120-20210813-00282.
    [7] SongW,YaoB,ZhuD,et al.3D-bioprinted microenvironments for sweat gland regeneration[J/OL].Burns Trauma,2022,10:tkab044[2022-06-18].https://pubmed.ncbi.nlm.nih.gov/35071651/.DOI: 10.1093/burnst/tkab044.
    [8] LopesSV,CollinsMN,ReisRL,et al.Vascularization approaches in tissue engineering: recent developments on evaluation tests and modulation[J].ACS Appl Bio Mater,2021,4(4):2941-2956.DOI: 10.1021/acsabm.1c00051.
    [9] BelderbosME,LevyO,MeyaardL,et al.Plasma-mediated immune suppression: a neonatal perspective[J].Pediatr Allergy Immunol,2013,24(2):102-113.DOI: 10.1111/pai.12023.
    [10] CoxST,DanbyR,HernandezD,et al.Functional characterisation and analysis of the soluble NKG2D ligand repertoire detected in umbilical cord blood plasma[J].Front Immunol,2018,9:1282.DOI: 10.3389/fimmu.2018.01282.
    [11] CoxST,MadrigalJA,SaudemontA.Three novel allelic variants of the RAET1E/ULBP4 gene in humans[J].Tissue Antigens,2012,80(4):390-392.DOI: 10.1111/j.1399-0039.2012.01933.x.
    [12] SambergM,StoneR2nd,NatesanS,et al.Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells[J].Acta Biomater,2019,87:76-87.DOI: 10.1016/j.actbio.2019.01.039.
    [13] SteinleA,LiP,MorrisDL,et al.Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family[J].Immunogenetics,2001,53(4):279-287.DOI: 10.1007/s002510100325.
    [14] VersuraP,ProfazioV,BuzziM,et al.Efficacy of standardized and quality-controlled cord blood serum eye drop therapy in the healing of severe corneal epithelial damage in dry eye[J].Cornea,2013,32(4):412-418.DOI: 10.1097/ICO.0b013e3182580762.
    [15] EvertsP,OnishiK,JayaramP,et al.Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020[J].Int J Mol Sci,2020,21(20):7794.DOI: 10.3390/ijms21207794.
    [16] LjubimovAV,SaghizadehM.Progress in corneal wound healing[J].Prog Retin Eye Res,2015,49:17-45.DOI: 10.1016/j.preteyeres.2015.07.002.
    [17] NagarajaS,ChenL,DiPietroLA,et al.Computational analysis identifies putative prognostic biomarkers of pathological scarring in skin wounds[J].J Transl Med,2018,16(1):32.DOI: 10.1186/s12967-018-1406-x.
    [18] FréchetteJP,MartineauI,GagnonG.Platelet-rich plasmas: growth factor content and roles in wound healing[J].J Dent Res,2005,84(5):434-439.DOI: 10.1177/154405910508400507.
    [19] SirchiaG,RebullaP,MozziF,et al.A quality system for placental blood banking[J].Bone Marrow Transplant,1998,21 Suppl 3:S43-47.
    [20] BuzziM,VersuraP,GrigoloB,et al.Comparison of growth factor and interleukin content of adult peripheral blood and cord blood serum eye drops for cornea and ocular surface diseases[J].Transfus Apher Sci,2018,57(4):549-555.DOI: 10.1016/j.transci.2018.06.001.
    [21] RebullaP,PupellaS,SantodiroccoM,et al.Multicentre standardisation of a clinical grade procedure for the preparation of allogeneic platelet concentrates from umbilical cord blood[J].Blood Transfus,2016,14(1):73-79.DOI: 10.2450/2015.0122-15.
    [22] ReddyLVK,MuruganD,MullickM,et al.Recent approaches for angiogenesis in search of successful tissue engineering and regeneration[J].Curr Stem Cell Res Ther,2020,15(2):111-134.DOI: 10.2174/1574888X14666191104151928.
    [23] KoleskyDB,TrubyRL,GladmanAS,et al.3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs[J].Adv Mater,2014,26(19):3124-3130.DOI: 10.1002/adma.201305506.
    [24] KobayashiY,SaitaY,TakakuT,et al.Platelet-rich plasma (PRP) accelerates murine patellar tendon healing through enhancement of angiogenesis and collagen synthesis[J].J Exp Orthop,2020,7(1):49.DOI: 10.1186/s40634-020-00267-1.
    [25] BerndtS,CarpentierG,TurziA,et al.Angiogenesis is differentially modulated by platelet-derived products[J].Biomedicines,2021,9(3):251.DOI: 10.3390/biomedicines9030251.
    [26] 中国老年医学学会烧创伤分会.浓缩血小板制品在创面修复中应用的全国专家共识(2020版)[J].中华烧伤杂志,2020,36(11):993-1002.DOI: 10.3760/cma.j.cn501120-20200507-00256.
    [27] LiY,MouS,XiaoP,et al.Delayed two steps PRP injection strategy for the improvement of fat graft survival with superior angiogenesis[J].Sci Rep,2020,10(1):5231.DOI: 10.1038/s41598-020-61891-6.
    [28] MartinoMM,BriquezPS,RangaA,et al.Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix[J].Proc Natl Acad Sci U S A,2013,110(12):4563-4568.DOI: 10.1073/pnas.1221602110.
    [29] ZhangX,YaoD,ZhaoW,et al.Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value[J]. Adv Funct Mater,2021,31(8):2009258.DOI: 10.1002/adfm.202009258.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  3016
  • HTML全文浏览量:  44
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-18

目录

    /

    返回文章
    返回