留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然生物材料促进创面修复的研究进展

高仪轩 王凌峰 巴特 邹晓防 曹胜军 李俊亮 李芳 周彪

高仪轩, 王凌峰, 巴特, 等. 天然生物材料促进创面修复的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(5): 481-486. DOI: 10.3760/cma.j.cn501225-20220630-00276.
引用本文: 高仪轩, 王凌峰, 巴特, 等. 天然生物材料促进创面修复的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(5): 481-486. DOI: 10.3760/cma.j.cn501225-20220630-00276.
Gao YX,Wang LF,Ba T,et al.Research advances of natural biomaterials in promoting wound repair[J].Chin J Burns Wounds,2023,39(5):481-486.DOI: 10.3760/cma.j.cn501225-20220630-00276.
Citation: Gao YX,Wang LF,Ba T,et al.Research advances of natural biomaterials in promoting wound repair[J].Chin J Burns Wounds,2023,39(5):481-486.DOI: 10.3760/cma.j.cn501225-20220630-00276.

天然生物材料促进创面修复的研究进展

doi: 10.3760/cma.j.cn501225-20220630-00276
基金项目: 

国家自然科学基金面上项目 82060348

内蒙古自治区自然科学基金 2020MS08022

内蒙古自治区科技计划 2020GG0214

内蒙古自治区科技创新引导项目 CXYD2020BT03

包头市卫生健康委科技计划 wsjkwkj048

空军特色医学中心面上项目 2021LC020

详细信息
    通讯作者:

    王凌峰,Email:wlf7413@vip.sina.com

    邹晓防,Email:zoubai185@163.com

Research advances of natural biomaterials in promoting wound repair

Funds: 

General program of National Natural Science Foundation of China 82060348

Natural Science Foundation of Inner Mongolia Autonomous Region 2020MS08022

Science and Technology Program of Inner Mongolia Autonomous Region 2020GG0214

Science and Technology Innovation Guide Project of Inner Mongolia Autonomous Region CXYD2020BT03

Science and Technology Plan of Baotou Health Commission wsjkwkj048

General Program of Air Force Specialty Medical Center 2021LC020

More Information
  • 摘要: 急慢性创面严重威胁患者的生命健康和生活质量,因此创面修复是近年来国内外学者研究的热点问题。随着材料学与组织工程的发展,越来越多由天然成分制备的生物材料被用于创面修复的基础研究和临床治疗,此类材料可作为创面组织再生的模板,诱导自体细胞黏附、迁移,促进细胞外基质沉积,具有广阔的临床应用前景。该文对创面修复领域中目前研究热门的天然生物材料的特点及其应用进展作一综述,旨在为新型创面敷料及组织工程皮肤研发提供思路。

     

  • 参考文献(43)

    [1] 高仪轩, 王凌峰, 巴特, 等. 胸腺素β4促进创面愈合的研究进展[J].中华烧伤与创面修复杂志,2022,38(4):378-384. DOI: 10.3760/cma.j.cn501120-20210221-00059.
    [2] 沈鑫, 刘雪, 宿烽, 等. 完全可降解聚乳酸及其共聚物的生物相容性:研究、应用与未来[J].中国组织工程研究,2018,22(14):2259-2264. DOI: 10.3969/j.issn.2095-4344.0734.
    [3] 曹胜军, 王凌峰, 巴特, 等. 异体小鼠脂肪源性间充质干细胞-微孔化羊脱细胞真皮基质对小鼠全层皮肤缺损创面愈合的影响及相关机制[J].中华烧伤杂志,2018,34(12):901-906. DOI: 10.3760/cma.j.issn.1009-2587.2018.12.015.
    [4] 陈晓旭, 罗雅馨, 毕浩然, 等. 脱细胞支架制备及其在组织工程和再生医学中的应用[J].中国组织工程研究,2022,26(4):591-596.
    [5] ŁabuśW, KitalaD, Klama-BaryłaA, et al. A new approach to the production of a biovital skin graft based on human acellular dermal matrix produced in-house, in vitro revitalized internally by human fibroblasts and keratinocytes on the surface[J]. J Biomed Mater Res B Appl Biomater, 2020,108(4):1281-1294. DOI: 10.1002/jbm.b.34476.
    [6] 周彪, 王凌峰, 张军, 等. 异种羊脱细胞真皮基质与自体微粒皮复合移植后创面愈合及COX-2、VEGF的表达研究[J/CD].中华损伤与修复杂志:电子版,2009,4(3):257-269. DOI: 10.3969/j.issn.1673-9450.2009.03.003.
    [7] GrandisRA, MiottoLN, GenaroLE, et al. In vitro evaluation of acellular collagen matrices derived from porcine pericardium: influence of the sterilization method on its biological properties[J]. Materials (Basel), 2021,14(21):6255. DOI: 10.3390/ma14216255.
    [8] FrançaR, MbehDA, SamaniTD, et al. The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan[J]. J Biomed Mater Res B Appl Biomater, 2013,101(8):1444-1455. DOI: 10.1002/jbm.b.32964.
    [9] PaolinA, TrojanD, LeonardiA, et al. Cytokine expression and ultrastructural alterations in fresh-frozen, freeze-dried and γ-irradiated human amniotic membranes[J]. Cell Tissue Bank, 2016,17(3):399-406. DOI: 10.1007/s10561-016-9553-x.
    [10] DragúňováJ, KabátP, BabálP, et al. Development of a new method for the preparation of an acellular allodermis, quality control and cytotoxicity testing[J]. Cell Tissue Bank, 2017,18(2):153-166. DOI: 10.1007/s10561-017-9625-6.
    [11] BoháčM, DanišovičĽ, KollerJ, et al. What happens to an acellular dermal matrix after implantation in the human body? A histological and electron microscopic study[J]. Eur J Histochem, 2018,62(1):2873. DOI: 10.4081/ejh.2018.2873.
    [12] GuoX, MuD, GaoF. Efficacy and safety of acellular dermal matrix in diabetic foot ulcer treatment: a systematic review and meta-analysis[J]. Int J Surg, 2017,40:1-7. DOI: 10.1016/j.ijsu.2017.02.008.
    [13] PontellME, SaadN, WintersBS, et al. Reverse sural adipofascial flaps with acellular dermal matrix and negative-pressure wound therapy[J]. Adv Skin Wound Care, 2018,31(1):612-617. DOI: 10.1097/01.ASW.0000527290.81581.af.
    [14] RoyR, HaaseT, MaN, et al. Decellularized amniotic membrane attenuates postinfarct left ventricular remodeling[J]. J Surg Res, 2016,200(2):409-419. DOI: 10.1016/j.jss.2015.08.022.
    [15] MartonE, GiordanE, GallinaroP, et al. Homologous amniotic membrane as a dural substitute in decompressive craniectomies[J]. J Clin Neurosci, 2021,89:412-421. DOI: 10.1016/j.jocn.2021.05.030.
    [16] Mahmoudi RadM, Talebpour AmiriF, MirhoseiniM, et al. Application of allogeneic fibroblast cultured on acellular amniotic membrane for full-thickness wound healing in rats[J]. Wounds, 2016,28(1):14-19.
    [17] XueSL, LiuK, ParoliniO, et al. Human acellular amniotic membrane implantation for lower third nasal reconstruction: a promising therapy to promote wound healing[J/OL]. Burns Trauma, 2018,6:34[2022-06-30]. https://pubmed.ncbi.nlm.nih.gov/30574512/. DOI: 10.1186/s41038-018-0136-x.
    [18] RamakrishnanR, HarikrishnanVS, AnilA, et al. Extracellular matrix-based combination scaffold for guided regeneration of large-area full-thickness rabbit burn wounds upon a single application[J]. J Biomed Mater Res B Appl Biomater, 2022,110(4):848-861. DOI: 10.1002/jbm.b.34965.
    [19] 杨凯, 张育敏, 张乃丽, 等. 小肠黏膜下层在组织修复重建中的应用研究进展[J].中国修复重建外科杂志,2013,27(9):1138-1143. DOI: 10.7507/1002-1892.20130248.
    [20] SarikayaA, RecordR, WuCC, et al. Antimicrobial activity associated with extracellular matrices[J]. Tissue Eng, 2002,8(1):63-71. DOI: 10.1089/107632702753503063.
    [21] 邓艺, 张一, 李博文, 等. 不同交联剂处理对脱细胞小肠黏膜下层多孔支架的影响[J].北京大学学报(医学版),2022,54(3):557-564. DOI: 10.19723/j.issn.1671-167X.2022.03.024.
    [22] 臧成五, 张凡亮, 杨诚, 等. 猪小肠黏膜下层脱细胞修复补片修复手部软组织缺损的效果分析[J].中华显微外科杂志,2020,43(2):157-160. DOI: 10.3760/cma.j.cn441206-20191225-00389.
    [23] XiaZ, GuoX, YuN, et al. The application of decellularized adipose tissue promotes wound healing[J]. Tissue Eng Regen Med, 2020,17(6):863-874. DOI: 10.1007/s13770-020-00286-0.
    [24] 郑洋洋, 刘毅, 郭镇. 脱细胞脂肪组织复合水凝胶在脂肪组织工程中的研究进展[J].中华整形外科杂志,2021,37(10):1181-1185. DOI: 10.3760/cma.j.cn114453-20200323-00176.
    [25] MelvilleJC, BennettsNA, TijerinaL, et al. The use of acellular urinary bladder matrix as coverage for fasciocutaneous free flap donor sites: an alternative to traditional grafting procedures[J]. J Oral Maxillofac Surg, 2017,75(10):2254-2260. DOI: 10.1016/j.joms.2017.03.011.
    [26] TuleubayevB, OgayV, AnapiyaB, et al. Therapeutic treatment of 2A grade burns with decellularized bovine peritoneum as a Xenograft: multicenter randomized clinical trial[J]. Medicina (Kaunas), 2022,58(6):819. DOI: 10.3390/medicina58060819.
    [27] PortelaR, LealCR, AlmeidaPL, et al. Bacterial cellulose: a versatile biopolymer for wound dressing applications[J]. Microb Biotechnol, 2019,12(4):586-610. DOI: 10.1111/1751-7915.13392.
    [28] 张卫佳, 刘盈. 细菌纤维素在创面修复中的研究与应用特性[J].中国组织工程研究,2018,22(34):5565-5570. DOI: 10.3969/j.issn.2095-4344.0687.
    [29] LahiriD, NagM, DuttaB, et al. Bacterial cellulose: Production, characterization, and application as antimicrobial agent[J]. Int J Mol Sci, 2021,22(23):12984. DOI: 10.3390/ijms222312984.
    [30] HeiseK, KontturiE, AllahverdiyevaY, et al. Nanocellulose: Recent fundamental advances and emerging biological and biomimicking applications[J]. Adv Mater, 2021,33(3):e2004349. DOI: 10.1002/adma.202004349.
    [31] GorgievaS, TrčekJ. Bacterial cellulose: production, modification and perspectives in biomedical applications[J]. Nanomaterials (Basel), 2019,9(10):1352. DOI: 10.3390/nano9101352.
    [32] SilvaMA, LeiteY, de CarvalhoC, et al. Behavior and biocompatibility of rabbit bone marrow mesenchymal stem cells with bacterial cellulose membrane[J]. PeerJ, 2018,6:e4656. DOI: 10.7717/peerj.4656.
    [33] LohE, MohamadN, FauziMB, et al. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing[J]. Sci Rep, 2018,8(1):2875. DOI: 10.1038/s41598-018-21174-7.
    [34] 于玛丽, 李丽梅, 郭家智, 等. 壳聚糖在组织工程的应用[J].中国高新科技,2019,(3):103-105. DOI: 10.13535/j.cnki.10-1507/n.2019.03.22.
    [35] RezaeiFS, SharifianjaziF, EsmaeilkhanianA, et al. Chitosan films and scaffolds for regenerative medicine applications: a review[J]. Carbohydr Polym, 2021,273:118631. DOI: 10.1016/j.carbpol.2021.118631.
    [36] Riaz RajokaMS, ZhaoL, MehwishHM, et al. Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges[J]. Appl Microbiol Biotechnol, 2019,103(4):1557-1571. DOI: 10.1007/s00253-018-9550-z.
    [37] JinL, YoonSJ, LeeDH, et al. Preparation of foam dressings based on gelatin, hyaluronic acid, and carboxymethyl chitosan containing fibroblast growth factor-7 for dermal regeneration[J]. Polymers (Basel), 2021,13(19):3279. DOI: 10.3390/polym13193279.
    [38] WinstanleyM, SmithJE, WrightC. Catastrophic haemorrhage in military major trauma patients: a retrospective database analysis of haemostatic agents used on the battlefield[J]. J R Army Med Corps, 2019,165(6):405-409. DOI: 10.1136/jramc-2018-001031.
    [39] GholipourmalekabadiM, SapruS, SamadikuchaksaraeiA, et al. Silk fibroin for skin injury repair: where do things stand?[J]. Adv Drug Deliv Rev, 2020, 153:28-53. DOI: 10.1016/j.addr.2019.09.003.
    [40] GholipourmalekabadiM, MozafariM, GholipourmalekabadiM, et al. In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds[J]. Biotechnol Appl Biochem, 2015,62(4):441-450. DOI: 10.1002/bab.1285.
    [41] ZhangY, FanW, MaZ, et al. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7[J]. Acta Biomater, 2010,6(8):3021-3028. DOI: 10.1016/j.actbio.2010.02.030.
    [42] BharB, ChakrabortyB, NandiSK, et al. Silk-based phyto-hydrogel formulation expedites key events of wound healing in full-thickness skin defect model[J]. Int J Biol Macromol, 2022,203:623-637. DOI: 10.1016/j.ijbiomac.2022.01.142.
    [43] WangY, SuL, HouY, et al. A biomimetic composite bilayer dressing composed of alginate and fibroin for enhancing full-thickness wound healing[J]. Macromol Biosci, 2022,22(4):e2100352. DOI: 10.1002/mabi.202100352.
  • 加载中
计量
  • 文章访问数:  445
  • HTML全文浏览量:  88
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30

目录

    /

    返回文章
    返回