留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载纳米酶的组织工程支架在创面修复中的应用与进展

郝瑞南 叶熙林 徐柏龙 孙芸 刘惠玉 饶烽 薛佳佳

郝瑞南, 叶熙林, 徐柏龙, 等. 负载纳米酶的组织工程支架在创面修复中的应用与进展[J]. 中华烧伤与创面修复杂志, 2023, 39(6): 591-595. DOI: 10.3760/cma.j.cn501225-20220806-00337.
引用本文: 郝瑞南, 叶熙林, 徐柏龙, 等. 负载纳米酶的组织工程支架在创面修复中的应用与进展[J]. 中华烧伤与创面修复杂志, 2023, 39(6): 591-595. DOI: 10.3760/cma.j.cn501225-20220806-00337.
Hao RN,Ye XL,Xu BL,et al.Application and advances of nanozyme-loaded tissue engineering scaffolds in wound repair[J].Chin J Burns Wounds,2023,39(6):591-595.DOI: 10.3760/cma.j.cn501225-20220806-00337.
Citation: Hao RN,Ye XL,Xu BL,et al.Application and advances of nanozyme-loaded tissue engineering scaffolds in wound repair[J].Chin J Burns Wounds,2023,39(6):591-595.DOI: 10.3760/cma.j.cn501225-20220806-00337.

负载纳米酶的组织工程支架在创面修复中的应用与进展

doi: 10.3760/cma.j.cn501225-20220806-00337
基金项目: 

国家自然科学基金青年科学基金项目 82002049

中央高校基本科研经费专项资金 buctrc202020

详细信息
    通讯作者:

    薛佳佳,Email:jiajiaxue@mail.buct.edu.cn

Application and advances of nanozyme-loaded tissue engineering scaffolds in wound repair

Funds: 

Youth Science Foundation Program of National Natural Science Foundation of China 82002049

Special Funds for Fundamental Scientific Research Expenses of Central Universities buctrc202020

More Information
  • 摘要: 有效重建受损皮肤组织并恢复其完整性和功能性仍是当前创伤修复领域面临的重要医学问题。近年来,纳米酶和组织工程支架在再生医学领域的飞速发展,使得开发新型皮肤创伤修复材料成为可能。该综述立足于皮肤创伤修复与再生过程,简述了纳米酶及其催化机制,同时介绍了常见的负载纳米酶的组织工程支架及其制造策略,总结了负载纳米酶的组织工程支架在创面修复过程中抗菌、抗炎等阶段的应用并探讨了其未来发展方向。

     

  • 参考文献(37)

    [1] OliverS,PhamT,LiY,et al.More than skin deep: using polymers to facilitate topical delivery of nitric oxide[J].Biomater Sci,2021,9(2):391-405.DOI: 10.1039/d0bm01197e.
    [2] ZhangY,JinY,CuiH,et al.Nanozyme-based catalytic theranostics[J].RSC Adv,2019,10(1):10-20.DOI: 10.1039/c9ra09021e.
    [3] LiY,ZhuW,LiJ,et al.Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms[J].Colloids Surf B Biointerfaces,2021,198:111465.DOI: 10.1016/j.colsurfb.2020.111465.
    [4] WangX , HuY , HuiW. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond[J]. Inorg Chem Front, 2016, 3(1): 41-60. DOI: 10.1039/C5QI00240K.
    [5] DongH,FanY,ZhangW,et al.Catalytic mechanisms of nanozymes and their applications in biomedicine[J].Bioconjug Chem,2019,30(5):1273-1296.DOI: 10.1021/acs.bioconjchem.9b00171.
    [6] 戈明亮,李越颖,梁国栋.纳米酶在传感检测中的应用研究进展[J].材料导报,2021,35(19):19195-19203.DOI: 10.11896/cldb.20060177.
    [7] WangH,WanK,ShiX.Recent advances in nanozyme research[J].Adv Mater,2019,31(45):e1805368.DOI: 10.1002/adma.201805368.
    [8] 李卓轩,封开政,张薇,等.纳米酶的催化机制及应用[J].科学通报,2018,63(21):2128-2139.DOI: 10.1360/N972018-00426.
    [9] YangW, YangX, ZhuL, et al. Nanozymes: activity origin, catalytic mechanism, and biological application[J]. Coordination Chemistry Reviews, 2021, 448: 214170. DOI: 10.1016/j.ccr.2021.214170.
    [10] CelardoI,PedersenJZ,TraversaE,et al.Pharmacological potential of cerium oxide nanoparticles[J].Nanoscale,2011,3(4):1411-1420. DOI: 10.1039/c0nr00875c.
    [11] DaiY, DingY, LiL. Nanozymes for regulation of reactive oxygen species and disease therapy[J]. Chinese Chemical Letters, 2021, 32(9): 2715-2728. DOI: 10.1016/j.cclet.2021.03.036.
    [12] HaoR,CuiZ,ZhangX,et al.Rational design and preparation of functional hydrogels for skin wound healing[J].Front Chem,2021,9:839055.DOI: 10.3389/fchem.2021.839055.
    [13] 周紫萱,姜耀男,肖仕初.原位成形可注射水凝胶特性及其促创面愈合作用研究进展[J].中华烧伤杂志,2021,37(1):82-85.DOI: 10.3760/cma.j.cn501120-20200428-00243.
    [14] JinX,ZhangW,ShanJ,et al.Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing[J].ACS Appl Mater Interfaces,2022,14(45):50677-50691.DOI: 10.1021/acsami.2c17242.
    [15] ShenJ,ChenA,CaiZ,et al.Exhausted local lactate accumulation via injectable nanozyme-functionalized hydrogel microsphere for inflammation relief and tissue regeneration[J].Bioact Mater,2022,12:153-168.DOI: 10.1016/j.bioactmat.2021.10.013.
    [16] GulA,GallusI,TegginamathA,et al.Electrospun antibacterial nanomaterials for wound dressings applications[J].Membranes (Basel),2021,11(12):908. DOI: 10.3390/membranes11120908.
    [17] GaoC,ZhangL,WangJ,et al.Electrospun nanofibers promote wound healing: theories, techniques, and perspectives[J].J Mater Chem B,2021,9(14):3106-3130.DOI: 10.1039/d1tb00067e.
    [18] HuM,KorscheltK,DanielP,et al.Fibrous nanozyme dressings with catalase-like activity for h2o2 reduction to promote wound healing[J].ACS Appl Mater Interfaces,2017,9(43):38024-38031.DOI: 10.1021/acsami.7b12212.
    [19] GaoL,ShaabaniS,Reyes RomeroA,et al.Correction: 'chemistry at the speed of sound': automated 1536-well nanoscale synthesis of 16 scaffolds in parallel[J].Green Chem,2023,25(10):4138.DOI: 10.1039/d3gc90037a.
    [20] ZhuW,ChiM,GaoM,et al.Controlled synthesis of titanium dioxide/molybdenum disulfide core-shell hybrid nanofibers with enhanced peroxidase-like activity for colorimetric detection of glutathione[J].J Colloid Interface Sci,2018,528:410-418.DOI: 10.1016/j.jcis.2018.05.068.
    [21] ChenS, ChiM, ZhuY, et al. A facile synthesis of superparamagnetic Fe3O4 nanofibers with superior peroxidase-like catalytic activity for sensitive colorimetric detection of l-cysteine[J]. Applied Surface Science, 2018, 440: 237-244. DOI: 10.1016/j.apsusc.2018.01.152.
    [22] SongW, ZhaoB, WangC, et al. Electrospun nanofibrous materials: a versatile platform for enzyme mimicking and their sensing applications[J]. Composites Communications, 2019, 12: 1-13. DOI: 10.1016/j.coco.2018.12.005.
    [23] 金荣华,张珍珍,徐鹏钦,等.三维生物打印抗菌型水凝胶对大鼠全层皮肤缺损创面的作用[J].中华烧伤与创面修复杂志,2023,39(2):165-174.DOI: 10.3760/cma.j.cn501120-20210809-00274.
    [24] MihaiMM,DimaMB,DimaB,et al.Nanomaterials for wound healing and infection control[J].Materials (Basel),2019,12(13):2176.DOI: 10.3390/ma12132176.
    [25] WangQ, WeiH, ZhangZ, et al. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 218-224. DOI: 10.1016/j.trac.2018.05.012.
    [26] ChenJ,ZhangS,ChenX,et al.A self-assembled fmoc-diphenylalanine hydrogel-encapsulated pt nanozyme as oxidase- and peroxidase-like breaking pH limitation for potential antimicrobial application[J].Chemistry,2022,28(26):e202104247.DOI: 10.1002/chem.202104247.
    [27] JiaZ,LvX,HouY,et al.Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics[J].Bioact Mater,2021,6(9):2676-2687.DOI: 10.1016/j.bioactmat.2021.01.033.
    [28] LiY,WangL,LiuH,et al.Ionic covalent-organic framework nanozyme as effective cascade catalyst against bacterial wound infection[J].Small,2021,17(32):e2100756.DOI: 10.1002/smll.202100756.
    [29] SangY, LiW, LiuH, et al. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria[J]. Advanced Functional Materials, 2019,29:1900518. DOI: 10.1002/adfm.201900518.
    [30] LiY,FuR,DuanZ,et al.Mussel-inspired adhesive bilayer hydrogels for bacteria-infected wound healing via NIR-enhanced nanozyme therapy[J].Colloids Surf B Biointerfaces,2022,210:112230.DOI: 10.1016/j.colsurfb.2021.112230.
    [31] SunD,PangX,ChengY,et al.Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection[J].ACS Nano,2020,14(2):2063-2076.DOI: 10.1021/acsnano.9b08667.
    [32] DickinsonBC,ChangCJ.Chemistry and biology of reactive oxygen species in signaling or stress responses[J].Nat Chem Biol,2011,7(8):504-511.DOI: 10.1038/nchembio.607.
    [33] RatherHA,ThakoreR,SinghR,et al.Antioxidative study of cerium oxide nanoparticle functionalised PCL-gelatin electrospun fibers for wound healing application[J].Bioact Mater,2017,3(2):201-211.DOI: 10.1016/j.bioactmat.2017.09.006.
    [34] TuC,LuH,ZhouT,et al.Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J].Biomaterials,2022,286:121597.DOI: 10.1016/j.biomaterials.2022.121597.
    [35] XiongY,ChenL,LiuP,et al.All-in-one: multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor[J].Small,2022,18(1):e2104229.DOI: 10.1002/smll.202104229.
    [36] WuH,LiF,ShaoW,et al.Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel[J].ACS Cent Sci,2019,5(3):477-485.DOI: 10.1021/acscentsci.8b00850.
    [37] LiY, FuR, DuanZ, et al. Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction[J]. Small, 2022, 18(18): e2200165. DOI: 10.1002/smll.202200165.
  • 加载中
计量
  • 文章访问数:  283
  • HTML全文浏览量:  90
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-06
  • 网络出版日期:  2023-06-25

目录

    /

    返回文章
    返回