留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属微电池敷料在创面修复中的研究进展

陈锦苗 陈萌 任晓川 陈为超 王娜 李纪伟

陈锦苗, 陈萌, 任晓川, 等. 金属微电池敷料在创面修复中的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(6): 596-600. DOI: 10.3760/cma.j.cn501225-20220926-00416.
引用本文: 陈锦苗, 陈萌, 任晓川, 等. 金属微电池敷料在创面修复中的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(6): 596-600. DOI: 10.3760/cma.j.cn501225-20220926-00416.
Chen JM,Chen M,Ren XC,et al.Research progress of metal micro-battery dressings in wound repair[J].Chin J Burns Wounds,2023,39(6):596-600.DOI: 10.3760/cma.j.cn501225-20220926-00416.
Citation: Chen JM,Chen M,Ren XC,et al.Research progress of metal micro-battery dressings in wound repair[J].Chin J Burns Wounds,2023,39(6):596-600.DOI: 10.3760/cma.j.cn501225-20220926-00416.

金属微电池敷料在创面修复中的研究进展

doi: 10.3760/cma.j.cn501225-20220926-00416
基金项目: 

国家自然科学基金青年科学基金项目 52203060

山东省高等学校青创科技支持计划创新团队 2022KJ152

中国博士后科学基金面上项目 2022M711735

青岛市市南区科技计划项目 2022-3-009-SW

详细信息
    通讯作者:

    李纪伟,Email:jiweili@qdu.edu.cn

Research progress of metal micro-battery dressings in wound repair

Funds: 

Youth Science Foundation Program of National Natural Science Foundation of China 52203060

Innovation Team of Shandong Province Higher Education Institution Youth Innovation Science and Technology Support Program 2022KJ152

The fellowship of China Postdoctoral Science Foundation 2022M711735

Qingdao City South District Science and Technology Plan Project 2022-3-009-SW

More Information
  • 摘要: 开发既能抑制细菌感染又能主动促愈合的敷料,对修复创面以及医疗技术的发展具有十分重要的意义。电刺激在创面愈合过程中具有止血、抗菌、抗炎、引导细胞迁移、促再上皮化以及促细胞增殖等多重作用。金属微电池可在无须外接电源的情况下,提供稳定的电刺激能量来源。因此金属微电池与医用敷料的一体化集成,为电刺激在创面修复领域的无线应用带来了新的机遇。该文在介绍电刺激对创面愈合作用机制的基础上,从制备、抗菌、促愈合等角度综述了金属微电池敷料在创面修复中的研究进展,并详细介绍了当前不同类型金属微电池敷料的发展现状、面临的挑战以及未来的发展趋势。

     

  • [1] LuoR, DaiJ, ZhangJ, et al. Accelerated skin wound healing by electrical stimulation[J]. Adv Healthc Mater, 2021,10(16):e2100557. DOI: 10.1002/adhm.202100557.
    [2] WangH, LiuY, CaiK, et al. Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing[J/OL]. Burns Trauma, 2021,9:tkab041[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/34988231/. DOI: 10.1093/burnst/tkab041.
    [3] XuN, YuanY, DingL, et al. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing[J/OL]. Burns Trauma, 2022,10:tkac019[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/35910193/. DOI: 10.1093/burnst/tkac019.
    [4] WangY, YinM, LiZ, et al. Preparation of antimicrobial and hemostatic cotton with modified mesoporous particles for biomedical applications[J]. Colloids Surf B Biointerfaces, 2018,165:199-206. DOI: 10.1016/j.colsurfb.2018.02.045.
    [5] 董晓蒙, 高晶, 孙沁, 等. 内源性电场及其生物学意义[J].生物化学与生物物理进展,2016,43(8):731-738. DOI: 10.16476/j.pibb.2016.0100.
    [6] 王文平, 冀然, 张泽, 等. 生物强度电场对人皮肤成纤维细胞转化的调节作用[J].中华烧伤与创面修复杂志,2022,38(4):354-362. DOI: 10.3760/cma.j.cn501120-20210112-00017.
    [7] WahlstenO, SkibaJ, MakinI, et al. Electrical field landscape of two electroceuticals[J]. J Electr Bioimpedance, 2016, 7(1):13.
    [8] QuJ, ZhaoX, LiangYP, et al. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing[J]. CHEN ENG J, 2019,362:548-560. DOI: 10.1016/j.cej.2019.01.028.
    [9] DuS, ZhouNY, GaoYJ, et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nano-generator for promoting skin wound healing[J]. NANO RES, 2020, 13(9):2525-2533. DOI: 10.1007/s12274-020-2891-9.
    [10] LiuS, LiJ, ZhangS, et al. Template-assisted magnetron sputtering of cotton nonwovens for wound healing application[J]. ACS Appl Bio Mater, 2020,3(2):848-858. DOI: 10.1021/acsabm.9b00942.
    [11] FengY, WangN, HeT, et al. Ag/Zn galvanic couple cotton nonwovens with breath-activated electroactivity: a possible antibacterial layer for personal protective face masks[J]. ACS Appl Mater Interfaces, 2021,13(49):59196-59205. DOI: 10.1021/acsami.1c15113.
    [12] TaiG, TaiM, ZhaoM. Electrically stimulated cell migration and its contribution to wound healing[J/OL]. Burns Trauma,2018, 6:20[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/30003115/. DOI: 10.1186/s41038-018-0123-2.
    [13] FrelingerAL, GerritsAJ, GarnerAL, et al. Modification of pulsed electric field conditions results in distinct activation profiles of platelet-rich plasma[J]. PLoS One, 2016,11(8):e0160933. DOI: 10.1371/journal.pone.0160933.
    [14] LeeJW, YoonSW, KimTH, et al. The effects of microcurrents on inflammatory reaction induced by ultraviolet irradiation[J]. J Phys Ther Sci, 2011, 23 (4):693-696. DOI: 10.1589/jpts.23.693.
    [15] 吕大伦, 徐姝娟, 丁伟, 等. 慢性难愈合创面病原微生物分布及其耐药性分析[J].中华烧伤杂志,2015,31(4):290-292. DOI: 10.3760/cma.j.issn.1009-2587.2015.04.014.
    [16] AsadiMR, TorkamanG, HedayatiM. Effect of sensory and motor electrical stimulation in vascular endothelial growth factor expression of muscle and skin in full-thickness wound[J]. J Rehabil Res Dev, 2011,48(3):195-201. DOI: 10.1682/jrrd.2009.11.0182.
    [17] SebastianA, SyedF, PerryD, et al. Acceleration of cutaneous healing by electrical stimulation: degenerate electrical waveform down-regulates inflammation, up-regulates angiogenesis and advances remodeling in temporal punch biopsies in a human volunteer study[J]. Wound Repair Regen, 2011,19(6):693-708. DOI: 10.1111/j.1524-475X.2011.00736.x.
    [18] BanerjeeJ, Das GhatakP, RoyS, et al. Improvement of human keratinocyte migration by a redox active bioelectric dressing[J]. PLoS One, 2014,9(3):e89239. DOI: 10.1371/journal.pone.0089239.
    [19] TandonN, CimettaE, VillasanteA, et al. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway[J]. Exp Cell Res, 2014,320(1):79-91. DOI: 10.1016/j.yexcr.2013.09.016.
    [20] WeissDS, EaglsteinWH, FalangaV. Exogenous electric current can reduce the formation of hypertrophic scars[J]. J Dermatol Surg Oncol, 1989,15(12):1272-1275. DOI: 10.1111/j.1524-4725.1989.tb03146.x.
    [21] ThawerHA, HoughtonPE. Effects of electrical stimulation on the histological properties of wounds in diabetic mice[J]. Wound Repair Regen, 2001,9(2):107-115. DOI: 10.1046/j.1524-475x.2001.00107.x.
    [22] LiangJ, ZengH, QiaoL, et al. 3D printed piezoelectric wound dressing with dual piezoelectric response models for scar-prevention wound healing[J]. ACS Appl Mater Interfaces, 2022,14(27):30507-30522. DOI: 10.1021/acsami.2c04168.
    [23] 曾帅丹, 杨磊. 各种组学分析在体表慢性难愈合创面中的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(1): 75-80. DOI: 10.3760/cma.j.cn501225-20220216-00030.
    [24] ParkSS, KimH, MakinIR, et al. Measurement of microelectric potentials in a bioelectrically-active wound care device in the presence of bacteria[J]. J Wound Care, 2015,24(1):23-33. DOI: 10.12968/jowc.2015.24.1.23.
    [25] ZhangS, DongH, HeR, et al. Hydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applications[J]. Int J Biol Macromol, 2022,207:100-109. DOI: 10.1016/j.ijbiomac.2022.02.155.
    [26] DongHB, ZhangSH, YangLG, et al. Cu/Zn galvanic couples composite antibacterial dressings prepared by template-assisted magnetron sputtering[J]. COMPOS PART B-ENG, 2021, 224:109240. DOI: https://doi.org/10.1016/j.compositesb.2021.109240.
    [27] LiuSP, ZhangSH, YangLG, et al. Nanofibrous scaffold by cleaner magnetron-sputtering additive manufacturing: a novel biocompatible platform for antibacterial application[J]. J CLEAN PROD, 2021, 315:128201. DOI: 10.1016/j.jclepro.2021.128201.
    [28] KimH, MakinI, SkibaJ, et al. Antibacterial efficacy testing of a bioelectric wound dressing against clinical wound pathogens[J]. Open Microbiol J, 2014,8:15-21. DOI: 10.2174/1874285801408010015.
    [29] KhonaDK, RoyS, GhatakS, et al. Ketoconazole resistant Candida albicans is sensitive to a wireless electroceutical wound care dressing[J]. Bioelectrochemistry, 2021,142:107921. DOI: 10.1016/j.bioelechem.2021.107921.
    [30] LiJW, FengYJ, ChenWC, et al. Electroactive materials: innovative antibacterial platforms for biomedical applications[J]. PROG MATER SCI, 2022, 132:101045. DOI: 10.1016/j.pmatsci.2022.101045.
    [31] GhatakPD, SchlangerR, GaneshK, et al. A wireless electroceutical dressing lowers cost of negative pressure wound therapy[J]. Adv Wound Care (New Rochelle), 2015,4(5):302-311. DOI: 10.1089/wound.2014.0615.
    [32] BarkiKG, DasA, DixithS, et al. Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing[J]. Ann Surg, 2019,269(4):756-766. DOI: 10.1097/SLA.0000000000002504.
    [33] TanSJ, HuangZZ, WangJJ, et al. Biological evaluation of microcurrent wound dressing based on printed silver and zinc electrodes[J]. TEXT RES J, 2021, 91 (19/20):2345-2356. DOI: 10.1177/00405175211003988.
    [34] YuC, XuZX, HaoYH, et al. A novel microcurrent dressing for wound healing in a rat skin defect model[J]. Mil Med Res, 2019,6(1):22. DOI: 10.1186/s40779-019-0213-x.
    [35] ZhangSH, ZhangQ, ChenJM, et al. Cost-effective chitosan thermal bonded nonwovens serving as an anti-viral inhibitor layer in face mask[J]. MATER LETT, 2022, 318:132203. DOI: 10.1016/j.matlet.2022.132203.
    [36] ZengQ, QiX, ShiG, et al. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations[J]. ACS Nano, 2022,16(2):1708-1733. DOI: 10.1021/acsnano.1c08411.
    [37] 刘江, 刘毅. 壳聚糖纳米纤维创面敷料的研究进展[J]. 中华烧伤杂志, 2020, 36(7): 627-630. DOI: 10.3760/cma.j.cn501120-20190628-00286.
    [38] LongC, QingYQ, LiSH, et al. Asymmetric composite wound nanodressing with superhydrophilic/superhydrophobic alternate pattern for reducing blood loss and adhesion[J]. COMPOS PART B-ENG, 2021, 223:109134. DOI: 10.1016/j.compositesb.2021.109134.
    [39] LiS, ChenA, ChenY, et al. Lotus leaf inspired antiadhesive and antibacterial gauze for enhanced infected dermal wound regeneration[J]. CHEM ENG J, 2020,402:126202-126201-126202-11. DOI: 10.1016/j.cej.2020.126202.
  • 加载中
计量
  • 文章访问数:  205
  • HTML全文浏览量:  53
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 网络出版日期:  2023-06-25

目录

    /

    返回文章
    返回