留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有序微纳米结构的生物材料用于创面修复的研究进展

陶怡冰 施可庆 肖健

陶怡冰, 施可庆, 肖健. 含有序微纳米结构的生物材料用于创面修复的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(9): 896-900. DOI: 10.3760/cma.j.cn501225-20221017-00455.
引用本文: 陶怡冰, 施可庆, 肖健. 含有序微纳米结构的生物材料用于创面修复的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(9): 896-900. DOI: 10.3760/cma.j.cn501225-20221017-00455.
Tao YB,Shi KQ,Xiao J.Research progress of biomaterials with ordered micro-nano structure in wound repair[J].Chin J Burns Wounds,2023,39(9):896-900.DOI: 10.3760/cma.j.cn501225-20221017-00455.
Citation: Tao YB,Shi KQ,Xiao J.Research progress of biomaterials with ordered micro-nano structure in wound repair[J].Chin J Burns Wounds,2023,39(9):896-900.DOI: 10.3760/cma.j.cn501225-20221017-00455.

含有序微纳米结构的生物材料用于创面修复的研究进展

doi: 10.3760/cma.j.cn501225-20221017-00455
基金项目: 

中国高校产学研创新基金 2021JH041

温州医科大学基本科研业务费立项项目重点项目 KYYW202108

详细信息
    通讯作者:

    肖健,Email:xfxj2000@126.com

Research progress of biomaterials with ordered micro-nano structure in wound repair

Funds: 

Industry-University-Research Inno-vation Fund for Chinese Universities 2021JH041

Approved Key Project of Basic Scientific Research Fund of Wenzhou Medical University KYYW202108

More Information
  • 摘要: 许多致伤因素,包括烧伤、手术等均可能导致皮肤结构和功能的破坏,合适的创面敷料或植入物是促进创面愈合与再生的物质基础。含微纳米结构的生物材料能够影响细胞行为,促进细胞顺应结构进行有序生长,将该类材料应用于创面修复中可促进血管新生、调节免疫反应、减少瘢痕面积。近年来,含有序微纳米结构的生物材料在组织工程中的应用得到了广泛关注。该文介绍了几种含有序微纳米结构的生物材料的结构和制备方法,并重点讨论了生物材料表面微结构如何影响创面愈合及其分子机制,以期为临床上创面的治疗寻找和研制更贴近皮肤组织结构的医学生物材料。

     

  • 参考文献(38)

    [1] VeithAP,HendersonK,SpencerA,et al.Therapeutic strategies for enhancing angiogenesis in wound healing[J].Adv Drug Deliv Rev,2019,146:97-125.DOI: 10.1016/j.addr.2018.09.010.
    [2] WengW,HeS,SongH,et al.Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior[J].ACS Nano,2018,12(8):7601-7612.DOI: 10.1021/acsnano.7b07439.
    [3] XuJ,ZanvitP,HuL,et al.The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching[J].Immunity,2020,53(2):371-383.e5.DOI: 10.1016/j.immuni.2020.06.023.
    [4] AtiyehBS,HayekSN,GunnSW.New technologies for burn wound closure and healing--review of the literature[J].Burns,2005,31(8):944-956.DOI: 10.1016/j.burns.2005.08.023.
    [5] 翁婷婷,蔡程浩,韩春茂,等.生物材料递送生长因子调控创面修复的研究进展[J].中华烧伤与创面修复杂志,2022,38(7):691-696.DOI: 10.3760/cma.j.cn501225-20220430-00166.
    [6] ChengRY,EylertG,GariepyJM,et al.Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns[J].Biofabrication,2020,12(2):025002.DOI: 10.1088/1758-5090/ab6413.
    [7] ShinMJ,ImSH,KimB,et al.Fabrication of scratched nanogrooves for highly oriented cell alignment and application as a wound healing dressing[J].ACS Appl Mater Interfaces,2023,15(15):18653-18662.DOI: 10.1021/acsami.3c00530.
    [8] WangZC,ZhaoWY,CaoY,et al.The roles of inflammation in keloid and hypertrophic scars[J].Front Immunol,2020,11:603187.DOI: 10.3389/fimmu.2020.603187.
    [9] XuX,LaiL,ZhangX,et al.Autologous chyle fat grafting for the treatment of hypertrophic scars and scar-related conditions[J].Stem Cell Res Ther,2018,9(1):64.DOI: 10.1186/s13287-018-0782-8.
    [10] PissarenkoA,YangW,QuanH,et al.Tensile behavior and structural characterization of pig dermis[J].Acta Biomater,2019,86:77-95.DOI: 10.1016/j.actbio.2019.01.023.
    [11] 解健,苏俭生.静电纺丝取向纳米纤维作为组织工程生物支架的优势与特征[J].中国组织工程研究,2021,25(16):2575-2581.
    [12] NakanishiJ,TakaradaT,YamaguchiK,et al.Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences[J].Anal Sci,2008,24(1):67-72.DOI: 10.2116/analsci.24.67.
    [13] QinS,RicottaV,SimonM,et al.Continual cell deformation induced via attachment to oriented fibers enhances fibroblast cell migration[J].PLoS One,2015,10(3):e0119094.DOI: 10.1371/journal.pone.0119094.
    [14] ChenK,PanH,JiD,et al.Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing[J].Mater Sci Eng C Mater Biol Appl,2021,127:112245.DOI: 10.1016/j.msec.2021.112245.
    [15] ZhangYS,ZhuC,XiaY.Inverse opal scaffolds and their biomedical applications[J].Adv Mater,2017,29(33): 10.1002/adma.201701115.DOI: 10.1002/adma.201701115.
    [16] ChenC,WangY,ZhangH,et al.Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment[J].Bioact Mater,2022,15:194-202.DOI: 10.1016/j.bioactmat.2021.11.037.
    [17] CaiJ,ZhangH,HuY,et al.GelMA-MXene hydrogel nerve conduits with microgrooves for spinal cord injury repair[J]. J Nanobiotechnology,2022,20(1):460.DOI: 10.1186/s12951-022-01669-2.
    [18] RicciC,AzimiB,PanarielloL,et al.Assessment of electrospun poly(ε-caprolactone) and poly(lactic acid) fiber scaffolds to generate 3D in vitro models of colorectal adenocarcinoma: a preliminary study[J].Int J Mol Sci,2023,24(11):9443.DOI: 10.3390/ijms24119443.
    [19] WalserJ,FergusonSJ.Oriented nanofibrous membranes for tissue engineering applications: electrospinning with secondary field control[J].J Mech Behav Biomed Mater,2016,58:188-198.DOI: 10.1016/j.jmbbm.2015.06.027.
    [20] WangL,SunL,BianF,et al.Self-bonded hydrogel inverse opal particles as sprayed flexible patch for wound healing[J].ACS Nano,2022,16(2):2640-2650.DOI: 10.1021/acsnano.1c09388.
    [21] KimJ,BaeWG,KimYJ,et al.Directional matrix nanotopography with varied sizes for engineering wound healing[J].Adv Healthc Mater,2017,6(19):1700297.DOI: 10.1002/adhm.201700297.
    [22] HomaeigoharS,LiM,BoccacciniAR.Bioactive glass-based fibrous wound dressings[J/OL].Burns Trauma,2022,10:tkac038[2022-10-17].https://pubmed.ncbi.nlm.nih.gov/36196303/.DOI: 10.1093/burnst/tkac038.
    [23] HassibaAJ,El ZowalatyME,NasrallahGK,et al.Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing[J].Nanomedicine (Lond),2016,11(6):715-737.DOI: 10.2217/nnm.15.211.
    [24] KimHN,HongY,KimMS,et al.Effect of orientation and density of nanotopography in dermal wound healing[J].Biomaterials,2012,33(34):8782-8792.DOI: 10.1016/j.biomaterials.2012.08.038.
    [25] SunL,LiJ,GaoW,et al.Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition in the wound healing process promoting skin regeneration through enhancing immunomodulation[J].J Mater Chem B,2021,9(5):1395-1405.DOI: 10.1039/d0tb01933j.
    [26] ShinYM,ShinHJ,HeoY,et al.Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation[J].J Mater Chem B,2017,5(2):318-328.DOI: 10.1039/c6tb02258h.
    [27] LamersE,WalboomersXF,DomanskiM,et al.In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates[J].Nanomedicine,2012,8(3):308-317.DOI: 10.1016/j.nano.2011.06.013.
    [28] LuuTU,GottSC,WooBW,et al.Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype[J].ACS Appl Mater Interfaces,2015,7(51):28665-28672.DOI: 10.1021/acsami.5b10589.
    [29] Nouri-GoushkiM,IsaakidouA,EijkelB,et al.3D printed submicron patterns orchestrate the response of macrophages[J].Nanoscale,2021,13(34):14304-14315.DOI: 10.1039/d1nr01557e.
    [30] BiH,LiH,ZhangC,et al.Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process[J].Stem Cell Res Ther,2019,10(1):302.DOI: 10.1186/s13287-019-1415-6.
    [31] 彭雨,孟浩,李品学,等.基于干细胞的组织工程修复材料促进体表慢性难愈合创面愈合的研究进展[J].中华烧伤与创面修复杂志,2023,39(3):290-295.DOI: 10.3760/cma.j.cn501225-20220407-00126.
    [32] MoffaM,SciancaleporeAG,PassioneLG,et al.Combined nano- and micro-scale topographic cues for engineered vascular constructs by electrospinning and imprinted micro-patterns[J].Small,2014,10(12):2439-2450.DOI: 10.1002/smll.201303179.
    [33] NohM,ChoiYH,AnYH,et al.Magnetic nanoparticle-embedded hydrogel sheet with a groove pattern for wound healing application[J].ACS Biomater Sci Eng,2019,5(8):3909-3921.DOI: 10.1021/acsbiomaterials.8b01307.
    [34] LuG,DingZ,WeiY,et al.Anisotropic biomimetic silk scaffolds for improved cell migration and healing of skin wounds[J].ACS Appl Mater Interfaces,2018,10(51):44314-44323.DOI: 10.1021/acsami.8b18626.
    [35] CummingBD,McElwainDL,UptonZ.A mathematical model of wound healing and subsequent scarring[J].J R Soc Interface,2010,7(42):19-34.DOI: 10.1098/rsif.2008.0536.
    [36] LiY,XiaoZ,ZhouY,et al.Controlling the multiscale network structure of fibers to stimulate wound matrix rebuilding by fibroblast differentiation[J].ACS Appl Mater Interfaces,2019,11(31):28377-28386.DOI: 10.1021/acsami.9b06439.
    [37] QiY,ZhangW,LiG,et al.An oriented-collagen scaffold including Wnt5a promotes osteochondral regeneration and cartilage interface integration in a rabbit model[J].FASEB J,2020,34(8):11115-11132.DOI: 10.1096/fj.202000280R.
    [38] ChenH,LuiYS,TanZW,et al.Migration and phenotype control of human dermal fibroblasts by electrospun fibrous substrates[J].Adv Healthc Mater,2019,8(9):e1801378.DOI: 10.1002/adhm.201801378.
  • 加载中
计量
  • 文章访问数:  174
  • HTML全文浏览量:  25
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17

目录

    /

    返回文章
    返回