留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非编码RNA调控糖尿病创面愈合机制的研究进展

李晓亮 谢江帆 叶向阳 李琰光 刘德伍

李晓亮, 谢江帆, 叶向阳, 等. 非编码RNA调控糖尿病创面愈合机制的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(2): 184-189. DOI: 10.3760/cma.j.cn501225-20221101-00477.
引用本文: 李晓亮, 谢江帆, 叶向阳, 等. 非编码RNA调控糖尿病创面愈合机制的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(2): 184-189. DOI: 10.3760/cma.j.cn501225-20221101-00477.
Li XL,Xie JF,Ye XY,et al.Research advances on the mechanism of non-coding RNA regulated diabetic wound healing[J].Chin J Burns Wounds,2023,39(2):184-189.DOI: 10.3760/cma.j.cn501225-20221101-00477.
Citation: Li XL,Xie JF,Ye XY,et al.Research advances on the mechanism of non-coding RNA regulated diabetic wound healing[J].Chin J Burns Wounds,2023,39(2):184-189.DOI: 10.3760/cma.j.cn501225-20221101-00477.

非编码RNA调控糖尿病创面愈合机制的研究进展

doi: 10.3760/cma.j.cn501225-20221101-00477
基金项目: 

河南省医学科技攻关项目 LHGJ20200700, LHGJ20210714

详细信息
    通讯作者:

    刘德伍,Email:dewuliu@126.com

Research advances on the mechanism of non-coding RNA regulated diabetic wound healing

Funds: 

Henan Medical Science and Technology Project LHGJ20200700, LHGJ20210714

More Information
  • 摘要: 糖尿病创面是糖尿病患者的常见并发症,近年来其发病率不断上升,且临床预后较差,严重影响患者的生活质量,逐渐成为糖尿病治疗的重点和难点。非编码RNA作为调控基因表达的RNA,可调控许多疾病的病理生理过程,在糖尿病创面的愈合过程中起着重要作用。该文对3种常见非编码RNA在糖尿病创面愈合过程中的调控作用、诊断价值、治疗潜力进行了综述,从基因层面和分子水平上为糖尿病创面的诊疗提供了新思路。

     

  • [1] XieWG, HuWG, HuangZ, et al. Betulinic acid accelerates diabetic wound healing by modulating hyperglycemia-induced oxidative stress, inflammation and glucose intolerance[J/OL]. Burns Trauma, 2022, 10:tkac007[2022-10-31]. https://pubmed.ncbi.nlm.nih.gov/35415192/. DOI: 10.1093/burnst/tkac007.
    [2] XieWG, ZhouXQ, HuWG, et al. Pterostilbene accelerates wound healing by modulating diabetes-induced estrogen receptor β suppression in hematopoietic stem cells[J/OL]. Burns Trauma, 2021, 9:tkaa045[2022-10-31]. https://pubmed.ncbi.nlm.nih.gov/33654697/. DOI: 10.1093/burnst/tkaa045.
    [3] SinghK, PalD, SinhaM, et al. Epigenetic modification of microRNA-200b contributes to diabetic vasculopathy[J]. Mol Ther, 2017,25(12):2689-2704. DOI: 10.1016/j.ymthe.2017.09.009.
    [4] JinGX, WangQ, HuXL, et al. Profiling and functional analysis of differentially expressed circular RNAs in high glucose-induced human umbilical vein endothelial cells[J]. FEBS Open Bio, 2019,9(9):1640-1651. DOI: 10.1002/2211-5463.12709.
    [5] RenHY, ZhaoF, ZhangQQ, et al. Autophagy and skin wound healing[J/OL]. Burns Trauma, 2022, 10:tkac003[2022-10-31]. https://pubmed.ncbi.nlm.nih.gov/35187180/. DOI: 10.1093/burnst/tkac003.
    [6] LiX,LiN,LiBX,et al.Noncoding RNAs and RNA-binding proteins in diabetic wound healing[J].Bioorg Med Chem Lett,2021,50:128311.DOI: 10.1016/j.bmcl.2021.128311.
    [7] LiSY, YangP, DingXF, et al. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype[J/OL]. Burns Trauma, 2022, 10:tkac046[2022-10-31]. https://pubmed.ncbi.nlm.nih.gov/36568527/. DOI: 10.1093/burnst/tkac046.
    [8] WuXQ, HeWJ, MuXR, et al. Macrophage polarization in diabetic wound healing[J/OL]. Burns Trauma, 2022, 10:tkac051[2022-10-31]. https://pubmed.ncbi.nlm.nih.gov/36601058/. DOI: 10.1093/burnst/tkac051.
    [9] HuJY, ZhangLP, LiechtyC, et al. Long noncoding RNA GAS5 regulates macrophage polarization and diabetic wound healing[J]. J Invest Dermatol, 2020,140(8):1629-1638. DOI: 10.1016/j.jid.2019.12.030.
    [10] DingJX,GaoBB,ChenZH,et al.An NIR-triggered Au nanocage used for photo-thermo therapy of chronic wound in diabetic rats through bacterial membrane destruction and skin cell mitochondrial protection[J].Front Pharmacol,2021,12:779944.DOI: 10.3389/fphar.2021.779944.
    [11] ZgheibC, HodgesMM, HuJY, et al. Long non-coding RNA Lethe regulates hyperglycemia-induced reactive oxygen species production in macrophages[J]. PLoS One, 2017,12(5):e0177453. DOI: 10.1371/journal.pone.0177453.
    [12] XuSJ, WengXY, WangY, et al. Screening and preliminary validation of T lymphocyte immunoregulationassociated long noncoding RNAs in diabetic foot ulcers[J]. Mol Med Rep, 2019,19(3):2368-2376. DOI: 10.3892/mmr.2019.9877.
    [13] UmeharaT, MoriR, MaceKA, et al. Identification of specific miRNAs in neutrophils of type 2 diabetic mice: overexpression of miRNA-129-2-3p cccelerates diabetic wound healing[J]. Diabetes, 2019,68(3):617-630. DOI: 10.2337/db18-0313.
    [14] WangJ, WangX, WangLF, et al. MiR-let-7d-3p regulates IL-17 expression through targeting AKT1/mTOR signaling in CD4+ T cells[J]. In Vitro Cell Dev Biol Anim, 2020, 56(1):67-74. DOI: 10.1007/s11626-019-00409-5.
    [15] GeigerA, WalkerA, NissenE. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice[J]. Biochem Biophys Res Commun, 2015,467(2):303-309. DOI: 10.1016/j.bbrc.2015.09.166.
    [16] BanE,JeongS,ParkM,et al.Accelerated wound healing in diabetic mice by miRNA-497 and its anti-inflammatory activity[J].Biomed Pharmacother,2020,121:109613.DOI: 10.1016/j.biopha.2019.109613.
    [17] ZhangW, SuiY. CircBPTF knockdown ameliorates high glucose-induced inflammatory injuries and oxidative stress by targeting the miR-384/LIN28B axis in human umbilical vein endothelial cells[J]. Mol Cell Biochem, 2020,471(1/2):101-111. DOI: 10.1007/s11010-020-03770-2.
    [18] ChenJJ, CuiLQ, YuanJL, et al. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124[J]. Biochem Biophys Res Commun, 2017,494(1/2):126-132. DOI: 10.1016/j.bbrc.2017.10.068.
    [19] ZhangX,ChenL,XiaoB,et al.Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-κB pathway[J].Biochem Biophys Res Commun,2019,511(3):551-558.DOI: 10.1016/j.bbrc.2019.02.082.
    [20] YanCQ, ChenJ, WangC, et al. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis[J]. Drug Deliv, 2022,29(1):214-228. DOI: 10.1080/10717544.2021.2023699.
    [21] LiB,ZhouY,ChenJ,et al.Long non-coding RNA H19 contributes to wound healing of diabetic foot ulcer[J].J Mol Endocrinol,2020,65(3): 69-84.DOI: 10.1530/JME-19-0242.
    [22] AlfaifiM, VermaAK, AlshahraniMY, et al. Assessment of cell-free long non-coding RNA-H19 and miRNA-29a, miRNA-29b expression and severity of diabetes[J]. Diabetes Metab Syndr Obes, 2020,13:3727-3737. DOI: 10.2147/DMSO.S273586.
    [23] WangJM, TaoJ, ChenDD, et al. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus[J]. Arterioscler Thromb Vasc Biol, 2014,34(1):99-109. DOI: 10.1161/ATVBAHA.113.302104.
    [24] XuXB, ZhangHT, LiJH, et al. Combination of EPC-EXs and NPC-EXs with miR-126 and miR-210 overexpression produces better therapeutic effects on ischemic stroke by protecting neurons through the Nox2/ROS and BDNF/TrkB pathways[J]. Exp Neurol, 2023,359:114235. DOI: 10.1016/j.expneurol.2022.114235.
    [25] AminKN,UmapathyD,AnandharajA,et al.miR-23c regulates wound healing by targeting stromal cell-derived factor-1α (SDF-1α/CXCL12) among patients with diabetic foot ulcer[J].Microvasc Res,2020,127:103924.DOI: 10.1016/j.mvr.2019.103924.
    [26] ZhengJJ,MaoYQ,DongPH,et al.Long noncoding RNA HOTTIP mediates SRF expression through sponging miR-150 in hepatic stellate cells[J].J Cell Mol Med,2019,23(2):1572-1580.DOI: 10.1111/jcmm.14068.
    [27] ZouJ, LiuKC, WangWP, et al. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy[J]. Life Sci, 2020,256:117888. DOI: 10.1016/j.lfs.2020.117888.
    [28] LiuXQ,DuanLS,ChenYQ,et al.lncRNA MALAT1 accelerates wound healing of diabetic mice transfused with modified autologous blood via the HIF-1α signaling pathway[J].Mol Ther Nucleic Acids,2019,17:504-515.DOI: 10.1016/j.omtn.2019.05.020.
    [29] HuMD, WuYX, YangC, et al. Novel long noncoding RNA lnc-URIDS delays diabetic wound healing by targeting Plod1[J]. Diabetes, 2020,69(10):2144-2156. DOI: 10.2337/db20-0147.
    [30] ZhouLY, RenM, ZengTT, et al. TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter in diabetic wound healing[J]. Cell Death Dis, 2019,10(11):813. DOI: 10.1038/s41419-019-2047-6.
    [31] YuanLQ, SunY, XuML, et al. miR-203 acts as an inhibitor for epithelial-mesenchymal transition process in diabetic foot ulcers via targeting interleukin-8[J]. Neuroimmunomodulation, 2019,26(5):239-249. DOI: 10.1159/000503087.
    [32] MouraJ,SørensenA,LealEC,et al.microRNA-155 inhibition restores fibroblast growth factor 7 expression in diabetic skin and decreases wound inflammation[J].Sci Rep,2019,9(1):5836.DOI: 10.1038/s41598-019-42309-4.
    [33] LiB, LuanS, ChenJ, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p[J]. Mol Ther Nucleic Acids, 2020,19:814-826. DOI: 10.1016/j.omtn.2019.11.034.
    [34] ZengTT,WangXY,WangW,et al.Endothelial cell-derived small extracellular vesicles suppress cutaneous wound healing through regulating fibroblasts autophagy[J].Clin Sci (Lond),2019,133(9): CS20190008.DOI: 10.1042/CS20190008.
    [35] LinCJ,LanYM,OuMQ,et al.Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats[J].J Endocrinol Invest,2019,42(11):1307-1317.DOI: 10.1007/s40618-019-01053-2.
    [36] DangwalS, StratmannB, BangC, et al. Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating microRNA patterns via inflammatory cytokines[J]. Arterioscler Thromb Vasc Biol, 2015,35(6):1480-1488. DOI: 10.1161/ATVBAHA.114.305048.
    [37] XuYX, PuSD, LiX, et al. Exosomal ncRNAs: novel therapeutic target and biomarker for diabetic complications[J]. Pharmacol Res, 2022,178:106135. DOI: 10.1016/j.phrs.2022.106135.
    [38] CaiHA, HuangL, ZhengLJ, et al. Ginsenoside (Rg-1) promoted the wound closure of diabetic foot ulcer through iNOS elevation via miR-23a/IRF-1 axis[J]. Life Sci, 2019,233:116525. DOI: 10.1016/j.lfs.2019.05.081.
    [39] SawayaAP, JozicI, StoneRC, et al. Mevastatin promotes healing by targeting caveolin-1 to restore EGFR signaling[J]. JCI Insight, 2019,4(23):e129320. DOI: 10.1172/jci.insight.129320.
    [40] XiaoX, XuMQ, YuHL, et al. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src[J]. Signal Transduct Target Ther, 2021,6(1):354. DOI: 10.1038/s41392-021-00765-3.
    [41] KaurP, KotruS, SinghS, et al. Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions[J]. Mol Neurobiol, 2022,59(3):1836-1849. DOI: 10.1007/s12035-021-02662-w.
  • 加载中
计量
  • 文章访问数:  201
  • HTML全文浏览量:  41
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01

目录

    /

    返回文章
    返回