留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载脂肪干细胞的皮肤组织工程支架在创面修复中的研究进展

李伟 孔维诗 包郁露 孙瑜

李伟, 孔维诗, 包郁露, 等. 负载脂肪干细胞的皮肤组织工程支架在创面修复中的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(11): 1090-1095. DOI: 10.3760/cma.j.cn501225-20221123-00502.
引用本文: 李伟, 孔维诗, 包郁露, 等. 负载脂肪干细胞的皮肤组织工程支架在创面修复中的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(11): 1090-1095. DOI: 10.3760/cma.j.cn501225-20221123-00502.
Li W,Kong WS,Bao YL,et al.Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair[J].Chin J Burns Wounds,2023,39(11):1090-1095.DOI: 10.3760/cma.j.cn501225-20221123-00502.
Citation: Li W,Kong WS,Bao YL,et al.Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair[J].Chin J Burns Wounds,2023,39(11):1090-1095.DOI: 10.3760/cma.j.cn501225-20221123-00502.

负载脂肪干细胞的皮肤组织工程支架在创面修复中的研究进展

doi: 10.3760/cma.j.cn501225-20221123-00502
基金项目: 

国家重点研发计划 2019YFA0110600, 2019YFA0110602, 2019YFA0110603

详细信息
    通讯作者:

    孙瑜,Email:littlefish0916@126.com

Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair

Funds: 

National Key Research and Development Program of China 2019YFA0110600, 2019YFA0110602, 2019YFA0110603

More Information
  • 摘要: 组织工程皮肤被广泛应用于重度烧伤创面、糖尿病创面等难愈性创面的治疗。种子细胞和支架材料是构建组织工程皮肤的关键元素。脂肪干细胞凭借其低免疫原性和多向分化潜能的优势逐渐成为组织工程皮肤中种子细胞的重要选择。支架材料是皮肤组织工程的重要组成部分,单一材料的改性和复合材料的制备正成为构建皮肤组织工程支架的主要研究方向。该文介绍了近年来各类负载脂肪干细胞的皮肤组织工程支架在创面修复中的应用情况,总结了应用各类支架材料构建皮肤组织工程支架时的优势与不足,期待为开发负载脂肪干细胞的组织工程皮肤提供新的思路。

     

  • 参考文献(45)

    [1] EmingSA,MartinP,Tomic-CanicM.Wound repair and regeneration: mechanisms, signaling, and translation[J].Sci Transl Med,2014,6(265):265sr6.DOI: 10.1126/scitranslmed.3009337.
    [2] MataiI,KaurG,SeyedsalehiA,et al.Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J].Biomaterials,2020,226:119536.DOI: 10.1016/j.biomaterials.2019.119536.
    [3] YuanX, LiL, LiuHF. Strategies for improving adipose-derived stem cells for tissue regeneration[J/OL]. Burns Trauma,2022,10:tkac028[2022-11-23].https://pubmed.ncbi.nlm.nih.gov/35992369/. DOI: 10.1093/burnst/tkac028.
    [4] WuXY,ZhuHF,CheJY,et al.Stem cell niche-inspired microcarriers with ADSCs encapsulation for diabetic wound treatment[J].Bioact Mater,2023,26:159-168.DOI: 10.1016/j.bioactmat.2023.02.031.
    [5] PiL, YangL, FangBR, et al. LncRNA MALAT1 from human adipose-derived stem cell exosomes accelerates wound healing via miR-378a/FGF2 axis[J]. Regen Med,2022,17(9):627-641.DOI: 10.2217/rme-2021-0170.
    [6] WiśniewskaJ, SłyszewskaM, StałanowskaK, et al. Effect of pig-adipose-derived stem cells' conditioned media on skin wound-healing characteristics in vitro[J]. Int J Mol Sci,2021,22(11):5469.DOI: 10.3390/ijms22115469.
    [7] ChoiEW,SeoMK,WooEY,et al.Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J].Exp Dermatol,2018,27(10):1170-1172.DOI: 10.1111/exd.13451.
    [8] ZhangX,JiangYH,HuangQ,et al.Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia[J].Stem Cell Res Ther,2021,12(1):403.DOI: 10.1186/s13287-021-02475-7.
    [9] YuQY, SunH, YueZW, et al. Zwitterionic polysaccharide-based hydrogel dressing as a stem cell carrier to accelerate burn wound healing[J]. Adv Healthc Mater,2023,12(7):e2202309.DOI: 10.1002/adhm.202202309.
    [10] LiMX,MaJ,GaoYB,et al.Epithelial differentiation of human adipose-derived stem cells (hASCs) undergoing three-dimensional (3D) cultivation with collagen sponge scaffold (CSS) via an indirect co-culture strategy[J].Stem Cell Res Ther,2020,11(1):141.DOI: 10.1186/s13287-020-01645-3.
    [11] SridharR,LakshminarayananR,MadhaiyanK,et al.Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J].Chem Soc Rev,2015,44(3):790-814.DOI: 10.1039/c4cs00226a.
    [12] MamsenFP, Munthe-FogL, KringMKM, et al. Differences of embedding adipose-derived stromal cells in natural and synthetic scaffolds for dermal and subcutaneous delivery[J]. Stem Cell Res Ther,2021,12(1):68.DOI: 10.1186/s13287-020-02132-5.
    [13] MuZX, ChenKW, YuanS, et al. Gelatin nanoparticle-injectable platelet-rich fibrin double network hydrogels with local adaptability and bioactivity for enhanced osteogenesis[J]. Adv Healthc Mater, 2020,9(5):e1901469. DOI: 10.1002/adhm.201901469.
    [14] GaoYM,GaoBW,ZhuHN,et al.Adipose-derived stem cells embedded in platelet-rich plasma scaffolds improve the texture of skin grafts in a rat full-thickness wound model[J].Burns,2020,46(2):377-385.DOI: 10.1016/j.burns.2019.07.041.
    [15] LaiFY, DaiSJ, ZhaoY, et al. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway[J/OL]. Injury,2023:S0020-1383(23)00123-7(2023-02-13)[2023-10-24]. https://pubmed.ncbi.nlm.nih.gov/37028952/.DOI:10.1016/j.injury.2023.02.027. [published online ahead of print].
    [16] NiXJ,ShanXY,XuLL,et al.Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects[J].Stem Cell Res Ther,2021,12(1):226.DOI: 10.1186/s13287-021-02257-1.
    [17] EbrahimN,DessoukyAA,MostafaO,et al.Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway[J].Stem Cell Res Ther,2021,12(1):392.DOI: 10.1186/s13287-021-02454-y.
    [18] SorushanovaA, DelgadoLM, WuZN, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development[J]. Adv Mater,2019,31(1):e1801651. DOI: 10.1002/adma.201801651.
    [19] ChenCC, IbrahimZ, MarchandMF, et al. Three-dimensional collagen topology shapes cell morphology,beyond stiffness[J]. ACS Biomater Sci Eng,2022,8(12):5284-5294.DOI: 10.1021/acsbiomaterials.2c00879.
    [20] BarreraJA, TrotsyukAA, MaanZN, et al. Adipose-derived stromal cells seeded in pullulan-collagen hydrogels improve healing in murine burns[J]. Tissue Eng Part A,2021,27(11/12):844-856.DOI: 10.1089/ten.TEA.2020.0320.
    [21] LiangH,RussellSJ,WoodDJ,et al.A hydroxamic acid-methacrylated collagen conjugate for the modulation of inflammation-related MMP upregulation[J].J Mater Chem B,2018,6(22):3703-3715.DOI: 10.1039/c7tb03035e.
    [22] MashikoT,TakadaH,WuSH,et al.Therapeutic effects of a recombinant human collagen peptide bioscaffold with human adipose-derived stem cells on impaired wound healing after radiotherapy[J].J Tissue Eng Regen Med,2018,12(5):1186-1194.DOI: 10.1002/term.2647.
    [23] ZhangXM,LiuKJ,QinM,et al.Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties[J].Carbohydr Polym,2023,309:120702.DOI: 10.1016/j.carbpol.2023.120702.
    [24] TangYH,TongXM,ConradB,et al.Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration in vivo[J].Theranostics,2020,10(13):6035-6047.DOI: 10.7150/thno.41096.
    [25] LagneauN,TournierP,HalgandB,et al.Click and bioorthogonal hyaluronic acid hydrogels as an ultra-tunable platform for the investigation of cell-material interactions[J].Bioact Mater,2023,24:438-449.DOI: 10.1016/j.bioactmat.2022.12.022.
    [26] da SilvaLP, SantosTC, RodriguesDB, et al. Stem cell-containing hyaluronic acid-based spongy hydrogels for integrated diabetic wound healing[J]. J Invest Dermatol,2017,137(7):1541-1551.DOI: 10.1016/j.jid.2017.02.976.
    [27] PakCS, HeoCY, ShinJ, et al. Effects of a catechol-functionalized hyaluronic acid patch combined with human adipose-derived stem cells in diabetic wound healing[J]. Int J Mol Sci,2021,22(5):2632.DOI: 10.3390/ijms22052632.
    [28] SharifiE, ChehelgerdiM, Fatahian-KelishadrokhiA, et al. Comparison of therapeutic effects of encapsulated mesenchymal stem cells in aloe vera gel and chitosan-based gel in healing of grade-Ⅱ burn injuries[J]. Regen Ther,2021,18:30-37.DOI: 10.1016/j.reth.2021.02.007.
    [29] SharifiF,HasaniM,AtyabiSM,et al.Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation[J].Mol Biol Rep,2022,49(12):12063-12075.DOI: 10.1007/s11033-022-08013-9.
    [30] WangJ,ZhouLH,SunQH,et al.Porous chitosan derivative scaffolds affect proliferation and osteogenesis of mesenchymal stem cell via reducing intracellular ROS[J].Carbohydr Polym,2020,237:116108.DOI: 10.1016/j.carbpol.2020.116108.
    [31] LinW,QiXY,GuoWJ,et al.A barrier against reactive oxygen species: chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing[J].Stem Cell Res Ther,2020,11(1):383.DOI: 10.1186/s13287-020-01901-6.
    [32] WangXZ, LiSQ, YuHL,et al. The biocompatibility of multi-source stem cells and gelatin-carboxymethyl chitosan-sodium alginate hybrid biomaterials[J]. Tissue Eng Regen Med,2022,19(3):491-503.DOI: 10.1007/s13770-021-00429-x.
    [33] GobiR, RavichandiranP, BabuRS, et al. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review[J]. Polymers (Basel),2021,13(12):1962.DOI: 10.3390/polym13121962.
    [34] FrydrychM,RománS,MacNeilS,et al.Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering[J].Acta Biomater,2015,18:40-49.DOI: 10.1016/j.actbio.2015.03.004.
    [35] WuF, ZhengJQ, LiZX, et al. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation[J]. Chem Eng J,2019,359:672-683. DOI: 10.1016/j.cej.2018.11.145.
    [36] MokhtariF,AzimiB,SalehiM,et al.Recent advances of polymer-based piezoelectric composites for biomedical applications[J].J Mech Behav Biomed Mater,2021,122:104669.DOI: 10.1016/j.jmbbm.2021.104669.
    [37] FuHJ,ZhangDQ,ZengJS,et al.Application of 3D-printed tissue-engineered skin substitute using innovative biomaterial loaded with human adipose-derived stem cells in wound healing[J].Int J Bioprint,2023,9(2):674.DOI: 10.18063/ijb.v9i2.674.
    [38] BarnettHH,HeimbuckAM,PursellI,et al.Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells[J].J Biomater Sci Polym Ed,2019,30(11):895-918.DOI: 10.1080/09205063.2019.1612725.
    [39] JinRH,CuiYC,ChenHJ,et al.Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink[J].Acta Biomater,2021,131:248-261.DOI: 10.1016/j.actbio.2021.07.012.
    [40] HuangRY,WangJ,ChenHX,et al.The topography of fibrous scaffolds modulates the paracrine function of Ad-MSCs in the regeneration of skin tissues[J].Biomater Sci,2019,7(10):4248-4259.DOI: 10.1039/c9bm00939f.
    [41] 贾赤宇,鲍武,程夏霖.创面愈合的机遇和挑战:组织工程皮肤[J/CD].中华损伤与修复杂志(电子版),2019,14(6):401-405. DOI: 10.3877/cma.j.issn.1673-9450.2019.06.001.
    [42] XiaSZ, WengTT, JinRH, et al. Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds[J/OL]. Burns Trauma,2022,10:tkac001[2023-10-24].https://pubmed.ncbi.nlm.nih.gov/35291229/.DOI: 10.1093/burnst/tkac001.
    [43] TyebS,ShiekhPA,VermaV, et al. Adipose-derived stem cells (ADSCs) loaded gelatin-sericin-laminin cryogels for tissue regeneration in diabetic wounds[J]. Biomacromolecules,2020,21(2):294-304.DOI: 10.1021/acs.biomac.9b01355.
    [44] MoonKC, SunHS, KimKB, et al. Potential of allogeneic adipose-derived stem cell-hydrogel complex for treating diabetic foot ulcers[J]. Diabetes,2019,68(4):837-846.DOI: 10.2337/db18-0699.
    [45] Mrozikiewicz-RakowskaB, Szabłowska-GadomskaI, CysewskiD, et al. Allogenic adipose-derived stem cells in diabetic foot ulcer treatment: clinical effectiveness, safety, survival in the wound site, and proteomic impact[J]. Int J Mol Sci,2023,24(2):1472.DOI: 10.3390/ijms24021472.
  • 表1  13项关于负载ADSC的皮肤替代物用于治疗难愈性创面的临床试验

    创面类型 发布年份 皮肤替代物 ADSC来源 项目编号
    深Ⅱ度烧伤创面 2015 异体脂肪来源的干细胞水凝胶 同种异体 NCT02619851
    糖尿病足溃疡创面 2015 异体脂肪来源的干细胞水凝胶 同种异体 NCT02394886
    压疮 2015 负载脂肪来源的基质细胞的纤维蛋白密封剂 自体 NCT02375802
    糖尿病足溃疡创面 2015 异体脂肪来源的干细胞水凝胶 同种异体 NCT02619877
    烧伤创面 2017 异体脂肪来源的干细胞水凝胶 同种异体 NCT03183648
    Ⅱ度及Ⅲ度烧伤创面 2017 负载ADSC的贫血小板血浆纤维蛋白水凝胶 同种异体 NCT03113747
    烧伤创面 2017 异体脂肪来源的干细胞水凝胶 同种异体 NCT03183622
    烧伤创面 2017 异体脂肪来源的干细胞水凝胶 同种异体 NCT03183648
    糖尿病足溃疡创面 2017 异体脂肪来源的干细胞水凝胶 同种异体 NCT03183804
    糖尿病足溃疡创面 2018 异体脂肪来源的干细胞水凝胶 同种异体 NCT03754465
    糖尿病足溃疡创面 2019 负载ADSC的纤维蛋白水凝胶 同种异体 NCT03865394
    糖尿病足溃疡创面 2020 异体脂肪来源的干细胞水凝胶 同种异体 NCT04569409
    糖尿病足溃疡创面 2020 异体脂肪来源的干细胞水凝胶 同种异体 NCT04590703
    注:ADSC为脂肪干细胞
    下载: 导出CSV
  • 加载中
表(1)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  167
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 网络出版日期:  2023-11-21

目录

    /

    返回文章
    返回