留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维生物打印技术的皮肤组织工程研究进展

李洋 惠涛涛 郑东梅 葛俊 罗晓娥 王琳

李洋, 惠涛涛, 郑东梅, 等. 基于三维生物打印技术的皮肤组织工程研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(11): 1096-1100. DOI: 10.3760/cma.j.cn501225-20230131-00029.
引用本文: 李洋, 惠涛涛, 郑东梅, 等. 基于三维生物打印技术的皮肤组织工程研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(11): 1096-1100. DOI: 10.3760/cma.j.cn501225-20230131-00029.
Li Y,Xi TT,Zheng DM,et al.Recent advances of skin tissue engineering based on three-dimensional bioprinting technology[J].Chin J Burns Wounds,2023,39(11):1096-1100.DOI: 10.3760/cma.j.cn501225-20230131-00029.
Citation: Li Y,Xi TT,Zheng DM,et al.Recent advances of skin tissue engineering based on three-dimensional bioprinting technology[J].Chin J Burns Wounds,2023,39(11):1096-1100.DOI: 10.3760/cma.j.cn501225-20230131-00029.

基于三维生物打印技术的皮肤组织工程研究进展

doi: 10.3760/cma.j.cn501225-20230131-00029
基金项目: 

国家自然科学基金青年科学基金项目 31900939

陕西省重点研发计划 2023-YBSF-039

详细信息
    通讯作者:

    王琳,Email:wanglin0527@126.com

Recent advances of skin tissue engineering based on three-dimensional bioprinting technology

Funds: 

Youth Science Foundation Project of National Natural Science Foundation of China 31900939

Key Research and Development Plan of Shaanxi Province of China 2023-YBSF-039

More Information
  • 摘要: 组织工程皮肤开发的主要目的是恢复皮肤受损严重患者的皮肤屏障功能,目前该类产品已成为临床上皮肤移植的理想替代物。随着三维生物打印技术的不断发展,构建的包含皮肤附属物等复杂结构的三维皮肤模型也日趋成熟。稳定的三维皮肤模型在皮肤生理病理研究、化妆品安全性及有效性评估,以及替代动物实验等方面具有广泛应用。该文针对三维生物打印技术进行了分类介绍,总结了常用于皮肤模型构建的生物墨水种类,综述了近年来三维生物打印技术在皮肤组织工程领域的应用研究进展,并对其未来研究发展方向和应用领域进行了探讨和展望。

     

  • 参考文献(31)

    [1] AgarwalS,SahaS,BallaVK,et al.Current developments in 3D bioprinting for tissue and organ regeneration–a review[J].Front Mech Eng,2020,6:90.DOI: 10.3389/fmech.2020.589171.
    [2] 李文韬,王金武.原位生物打印的研究进展与前景[J].上海交通大学学报(医学版),2021,41(2):228-232.DOI: 10.3969/j.issn.1674-8115.2021.02.016.
    [3] YanezM,RinconJ,DonesA,et al.In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds[J].Tissue Eng Part A,2015,21(1/2):224-233.DOI: 10.1089/ten.TEA.2013.0561.
    [4] LianQ,JiaoT,ZhaoT,et al.3D bioprinted skin substitutes for accelerated wound healing and reduced scar[J]. J Bionic Eng,2021,18(4):900-914.DOI: 10.1007/s42235-021-0053-8.
    [5] JorgensenAM,VarkeyM,GorkunA,et al.Bioprinted skin recapitulates normal collagen remodeling in full-thickness wounds[J].Tissue Eng Part A,2020,26(9/10):512-526.DOI: 10.1089/ten.TEA.2019.0319.
    [6] MichaelS,SorgH,PeckCT,et al.Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice[J].PLoS One,2013,8(3):e57741.DOI: 10.1371/journal.pone.0057741.
    [7] AnadaT,PanCC,StahlAM,et al.Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis[J].Int J Mol Sci,2019,20(5):1096.DOI: 10.3390/ijms20051096.
    [8] BaltazarT,JiangB,MoncayoA,et al.3D bioprinting of an implantable xeno-free vascularized human skin graft[J].Bioeng Transl Med,2022,8(1):e10324.DOI: 10.1002/btm2.10324.
    [9] ZidaričT,MilojevićM,GradišnikL,et al.Polysaccharide-based bioink formulation for 3D bioprinting of an in vitro model of the human dermis[J].Nanomaterials (Basel),2020,10(4):733.DOI: 10.3390/nano10040733.
    [10] SkardalA,MackD,KapetanovicE,et al.Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds[J].Stem Cells Transl Med,2012,1(11):792-802.DOI: 10.5966/sctm.2012-0088.
    [11] DerrK,ZouJ,LuoK,et al.Fully three-dimensional bioprinted skin equivalent constructs with validated morphology and barrier function[J].Tissue Eng Part C Methods,2019,25(6):334-343.DOI: 10.1089/ten.TEC.2018.0318.
    [12] KuoCC,QinH,ChengY,et al.An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying[J]. Food Hydrocolloids,2021,111:106262.DOI: 10.1016/j.foodhyd.2020.106262.
    [13] ShiY,XingTL,ZhangHB,et al.Tyrosinase-doped bioink for 3D bioprinting of living skin constructs[J].Biomed Mater,2018,13(3):035008.DOI: 10.1088/1748-605X/aaa5b6.
    [14] de MeloB,JodatYA,CruzEM,et al.Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues[J].Acta Biomater,2020,117:60-76.DOI: 10.1016/j.actbio.2020.09.024.
    [15] HakimiN,ChengR,LengL,et al.Handheld skin printer: in situ formation of planar biomaterials and tissues[J].Lab Chip,2018,18(10):1440-1451.DOI: 10.1039/c7lc01236e.
    [16] HafeziF,ScoutarisN,DouroumisD,et al.3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds[J].Int J Pharm,2019,560:406-415.DOI: 10.1016/j.ijpharm.2019.02.020.
    [17] RamasamyS,DavoodiP,VijayavenkataramanS,et al.Optimized construction of a full thickness human skin equivalent using 3D bioprinting and a PCL/collagen dermal scaffold[J].Bioprinting,2021,21:e00123.DOI: 10.1016/j.bprint.2020.e00123.
    [18] AydogduMO,OnerET,EkrenN,et al.Comparative characterization of the hydrogel added PLA/β-TCP scaffolds produced by 3D bioprinting[J].Bioprinting,2019,13:e00046.DOI: 10.1016/j.bprint.2019.e00046.
    [19] PanX,YouC,WuP,et al.The optimization of PLGA knitted mesh reinforced-collagen/chitosan scaffold for the healing of full-thickness skin defects[J].J Biomed Mater Res B Appl Biomater,2023,111(4):763-774.DOI: 10.1002/jbm.b.35187.
    [20] WangS,XiongY,ChenJ,et al.Three dimensional printing bilayer membrane scaffold promotes wound healing[J].Front Bioeng Biotechnol,2019,7:348.DOI: 10.3389/fbioe.2019.00348.
    [21] KimBS,GaoG,KimJY,et al.3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin[J].Adv Healthc Mater,2019,8(7):e1801019.DOI: 10.1002/adhm.201801019.
    [22] López de AndrésJ,Ruiz-ToranzoM,AntichC,et al.Biofabrication of a tri-layered 3D-bioprinted CSC-based malignant melanoma model for personalized cancer treatment[J].Biofabrication,2023,15(3).DOI: 10.1088/1758-5090/ac8dc6.
    [23] ShinJU,AbaciHE,HerronL,et al.Recapitulating T cell infiltration in 3D psoriatic skin models for patient-specific drug testing[J].Sci Rep,2020,10(1):4123.DOI: 10.1038/s41598-020-60275-0.
    [24] ShenHY,LiuZH,HongJS,et al.Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing[J].J Control Release,2021,331:154-163.DOI: 10.1016/j.jconrel.2021.01.024.
    [25] KimBS,KwonYW,KongJS,et al.3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering[J].Biomaterials,2018,168:38-53.DOI: 10.1016/j.biomaterials.2018.03.040.
    [26] LèguesM,MiletC,ForrazN,et al.The world's first 3D bioprinted immune skin model suitable for screening drugs and ingredients for normal and inflamed skin[J].IFSCC Magazine,2020,233-239.
    [27] WeiZ,LiuX,OokaM,et al.Two-dimensional cellular and three-dimensional bio-printed skin models to screen topical-use compounds for irritation potential[J].Front Bioeng Biotechnol,2020,8:109.DOI: 10.3389/fbioe.2020.00109.
    [28] ZhangY,Enhejirigala,YaoB,et al.Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles[J/OL].Burns Trauma,2021,9:tkab013[2023-01-31].https://pubmed.ncbi.nlm.nih.gov/34213515/.DOI: 10.1093/burnst/tkab013.
    [29] RadmaneshS,ShabangizS,KoupaeiN,et al.3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review[J].J Polym Res,2022,29:50.DOI: 10.1007/s10965-022-02899-6.
    [30] AntezanaPE,MunicoyS,Álvarez-EchazúMI,et al.The 3D bioprinted scaffolds for wound healing[J].Pharmaceutics,2022,14(2):464.DOI: 10.3390/pharmaceutics14020464.
    [31] ShinJ,LeeY,LiZ,et al.Optimized 3D bioprinting technology based on machine learning: a review of recent trends and advances[J].Micromachines (Basel),2022,13(3):363.DOI: 10.3390/mi13030363.
  • 加载中
计量
  • 文章访问数:  350
  • HTML全文浏览量:  129
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-31
  • 网络出版日期:  2023-11-21

目录

    /

    返回文章
    返回