Pan-cancer analysis of ubiquitin-specific protease 7 and its expression changes in the carcinogenesis of scar ulcer
-
摘要:
目的 探讨泛素特异性蛋白酶7(USP7)在瘢痕溃疡癌变过程中的生物学作用及其临床意义。 方法 采用回顾性观察性研究结合生物信息学分析方法。从癌症基因组图谱(TCGA)数据库和基因表达综合数据库中获取USP7在肿瘤和/或其对应癌旁正常组织中的RNA表达谱数据,并将RNA测序数据进行log 2转化。通过多维度癌症基因集cBioPortal数据库分析 USP7基因变异情况,并分析其突变位点。通过TIMER 2.0数据库中“差异表达”模块获得TCGA数据库中肿瘤、癌旁正常组织USP7 mRNA表达情况。使用基因表达谱交互分析2(GEPIA2)数据库分析皮肤黑色素瘤(SKCM)、宫颈鳞状细胞癌(CESC)、肺鳞状细胞癌(LUSC)和头颈鳞状细胞癌(HNSC)中高表达USP7患者与低表达USP7患者的生存率并绘制Kaplan-Meier生存曲线。利用Sangerbox数据库分析USP7在泛癌中的表达与微卫星不稳定性(MSI)或肿瘤突变负担(TMB)的相关性。通过GEPIA2数据库中“相关性分析”模块,评估USP7在泛癌中的表达与5种DNA错配修复基因( MLH1、 MSH2、 MSH6、 PMS2和 EPCAM)表达水平和3种必需DNA甲基转移酶(DNMT)——DNMT1、DNMT3A、DNMT3B表达水平的相关性。通过TIMER 2.0数据库中“免疫-基因”模块分析USP7在CESC、HNSC、LUSC和SKCM中表达及其与免疫细胞(B细胞、CD4 +T细胞、CD8 +T细胞、中性粒细胞、巨噬细胞和树突状细胞)浸润的相关性。利用GEPIA2数据库的“相似基因检测”模块获得与USP7表达模式相似且排名前100的蛋白集。将前述蛋白集与利用STRING数据库获得的与USP7有直接物理结合作用且排名前50的蛋白集进行交集分析。通过DAVID数据库对上述2个蛋白集进行京都基因与基因组百科全书(KEGG)和基因本体论(GO)富集分析。收集2018年10月—2022年10月武汉大学附属同仁医院暨武汉市第三医院病理科有相应临床病理特征的正常皮肤、增生性瘢痕、瘢痕溃疡、瘢痕癌的术后标本,采用免疫组织化学法检测组织中USP7表达情况,样本数为6。对数据行Log-rank检验、单因素方差分析及Bonferroni检验。 结果 在泛癌中, USP7的主要基因变异类型为突变和扩增,变异频率(>6%)居前3位的肿瘤依次为膀胱尿路上皮癌、SKCM和子宫内膜癌。 USP7基因在泛癌中的主要突变为错义突变。在突变频率最高的SKCM中,主要突变类型是USP7_ICP0_bdg结构域的错义突变。USP7 mRNA在乳腺浸润癌、胆管癌、结肠癌、食管癌、HNSC、肾嫌色细胞癌、肝细胞肝癌、肺腺癌、LUSC、前列腺癌和胃癌肿瘤组织中的表达均明显高于其对应的癌旁正常组织( P<0.05),在多形成性胶质细胞瘤、肾透明细胞癌、肾乳头状细胞癌和甲状腺癌中的表达均明显低于其对应的癌旁正常组织( P<0.05);此外,USP7 mRNA在SKCM转移组织中的表达远高于其原发肿瘤组织( P<0.05)。生存曲线显示,在CESC、HNSC、LUSC和SKCM中,高表达USP7患者与低表达USP7患者的存活率比较,差异均无统计学意义(Log-rank P>0.05,风险比分别为1.00、0.99、1.00、1.30)。USP7在结肠癌、结直肠癌、胸腺癌、甲状腺癌中的表达均与TMB呈显著负相关(Pearson相关系数分别为-0.26、-0.19、-0.19和-0.11, P<0.05);USP7在神经胶质瘤、CESC、肺腺癌、混合肾癌、LUSC中的表达均与MSI呈显著正相关(Pearson相关系数分别为0.22、0.14、0.15、0.08和0.14, P<0.05),在结肠癌、结直肠癌、乳腺浸润癌、前列腺癌、HNSC、甲状腺癌和弥漫性大B细胞淋巴瘤中的表达均与MSI呈显著负相关(Pearson相关系数分别为-0.31、-0.27、-0.13、-0.19、-0.16、-0.18和-0.53, P<0.05)。USP7在CESC中的表达与MSH2和MSH6的表达均呈明显正相关(Spearman相关系数分别为0.51和0.44, P<0.05),在HNSC中的表达与EPCAM、MLH1、MSH2、MSH6、PMS2的表达均呈明显正相关(Spearman相关系数分别为0.39、0.14、0.49、0.54和0.41, P<0.05),在LUSC中的表达与EPCAM、MSH2、MSH6和PMS2的表达均呈明显正相关(Spearman相关系数分别为0.20、0.36、0.40和0.34, P<0.05),在SKCM中的表达与EPCAM、MLH1、MSH2、MSH6和PMS2的表达均呈明显正相关(Spearman相关系数分别为0.11、0.33、0.42、0.55和0.34, P<0.05);USP7在CESC、HNSC、LUSC和SKCM中的表达与DNMT1、DNMT3A和DNMT3B的表达均呈显著正相关(Spearman相关系数分别为0.42、0.34和0.22,0.45、0.52和0.22,0.36、0.36和0.22,0.38、0.46和0.21, P<0.05)。USP7在CESC、HNSC、LUSC和SKCM中的表达仅与CD4 +T细胞浸润呈显著正相关(Partial相关系数分别为0.14、0.22、0.13、0.16, P<0.05)。与USP7表达模式相似且排名前100的蛋白集中,排名前5的蛋白依次是C16orf72、BCLAF1、UBN、GSPT1、ERI2(Spearman相关系数分别为0.83、0.74、0.73、0.73和0.72, P值均<0.05)。与USP7有直接物理结合作用且排名前50的蛋白集与前述蛋白集的交集仅有1个蛋白,即为甲状腺激素受体相互作用因子12。KEGG富集分析显示,USP7相关基因涉及细胞周期、剪接体、细胞衰老和p53信号通路等。GO富集分析显示,USP7相关基因涉及转录调控、蛋白质泛素化、DNA修复和细胞质模式识别受体信号通路等。临床样本分析显示,USP7在增生性瘢痕(0.35±0.05)、瘢痕溃疡(0.43±0.04)和瘢痕癌(0.61±0.03)中的表达均明显高于正常皮肤(0.18±0.04), P<0.05。 结论 USP7可能为临床瘢痕溃疡癌变恶化的生物标志物。 Abstract:Objective To explore the biological role and clinical significance of ubiquitin-specific protease 7 (USP7) in the carcinogenesis of scar ulcer. Methods A retrospective observational study combined with bioinformatics analysis was used. The RNA expression profile data of USP7 in tumor and/or its corresponding paracancular normal tissue were obtained from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus database, and the RNA sequencing data were transformed by log 2. The variations of USP7 gene were analyzed by cBioPortal database. The USP7 mRNA expression in tumor and adjacent normal tissue in TCGA database were obtained by using the "Gene_DE" module in TIMER 2.0 database. The survival rates of patients with high and low USP7 expression in cutaneous melanoma (SKCM), cervical squamous cell carcinoma (CESC), lung squamous cell carcinoma (LUSC), and head and neck squamous cell carcinoma (HNSC) were analyzed using the Gene Expression Profile Interactive Analysis 2 (GEPIA2) database, and the Kaplan-Meier survival curves were drawn. Sangerbox database was used to analyze the correlation of USP7 expression in pan-cancer with microsatellite instability (MSI) or tumor mutation burden (TMB) pan-cancer. Through the "correlation analysis" module in the GEPIA2 database, the correlation of USP7 expression in pan-cancer with the expression levels of five DNA mismatch repair genes ( MLH1, MSH2, MSH6, PMS2, and EPCAM) and three essential DNA methyltransferases (DNMT)--DNMT1, DNMT3A, and DNMT3B were evaluated. The USP7 expression in CESC, HNSC, LUSC, and SKCM and its correlation with infiltration of immune cells (B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells) were analyzed by the "Immune-Gene" module in TIMER 2.0 database. The "Similar Genes Detection" module of GEPIA2 database was used to obtain the top 100 protein sets with similar expression patterns to USP7. Intersection analysis was performed between the aforementioned protein sets and the top 50 protein sets that were directly physically bound to USP7 obtained by using the STRING database. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were performed for the two protein sets mentioned above using the DAVID database. The samples of normal skin, hypertrophic scar, scar ulcer, and scar carcinoma with corresponding clinicopathologic features were collected from the Department of Pathology of Tongren Hospital of Wuhan University & Wuhan Third Hospital from October 2018 to October 2022, and the USP7 expression in tissue was detected by immunohistochemical method, with the number of samples of 6. Data were statistically analyzed with Log-rank test, one-way analysis of variance, and Bonferroni test. Results In pan-cancer, the main gene variations of USP7 were mutation and amplification, and the top 3 tumors with the highest variation frequency (>6%) were bladder urothelial carcinoma, SKCM, and endometrial carcinoma. The main mutation of USP7 gene in pan-cancer was missense mutation. In SKCM with the highest mutation frequency, the main type of mutation was missense mutation in USP7_ICP0_bdg domain. USP7 mRNA expression in breast invasive carcinoma, bile duct carcinoma, colon carcinoma, esophageal carcinoma, HNSC, renal chromophobe cell carcinoma, hepatocellular carcinoma, lung adenocarcinoma, LUSC, prostate carcinoma, and gastric carcinoma was significantly higher than that in corresponding paracancer normal tissue ( P<0.05). USP7 mRNA expression in glioblastoma multiforme, renal clear cell carcinoma, renal papillary cell carcinoma, and thyroid carcinoma was significantly lower than that in corresponding paracancular normal tissue ( P<0.05). In addition, USP7 mRNA expression in SKCM metastases was much higher than that in primary tumor tissue ( P<0.05). Survival curves showed no significant difference in survival rate between patients with high USP7 expression and patients with low USP7 expression in CESC, HNSC, LUSC, and SKCM (Log-rank P>0.05, with hazard ratios of 1.00, 0.99, 1.00, and 1.30, respectively). USP7 expression in colon cancer, colorectal cancer, thymic cancer, and thyroid cancer was negatively correlated with TMB (with Pearson correlation coefficients of -0.26, -0.19, -0.19, and 0.11, respectively, P<0.05). USP7 expression in glioma, CESC, lung adenocarcinoma, mixed renal carcinoma, and LUSC was positively correlated with MSI expression (with Pearson correlation coefficients of 0.22, 0.14, 0.15, 0.08, and 0.14, respectively, P<0.05), and USP7 expression in colon cancer, colorectal cancer, invasive breast cancer, prostate cancer, HNSC, thyroid cancer, and diffuse large B-cell lymphoma were significantly negatively correlated with MSI expression (with Pearson correlation coefficients of -0.31, -0.27, -0.13, -0.19, -0.16, -0.18, and -0.53, respectively, P<0.05). The expression of USP7 in CESC was positively correlated with that of both MSH2 and MSH6 (with Spearman correlation coefficients of 0.51 and 0.44, respectively, P<0.05), and the expression of USP7 in HNSC was positively correlated with the expression of EPCAM, MLH1, MSH2, MSH6, and PMS2 (with Spearman correlation coefficients of 0.39, 0.14, 0.49, 0.54, and 0.41, respectively, P<0.05), and the expression of USP7 in LUSC was positively correlated with the expression of EPCAM, MSH2, MSH6, and PMS2 (with Spearman correlation coefficients of 0.20, 0.36, 0.40, and 0.34, respectively, P<0.05), and the expression of USP7 in SKCM was positively correlated with the expression of EPCAM, MLH1, MSH2, MSH6, and PMS2 (with Spearman correlation coefficients of 0.11, 0.33, 0.42, 0.55, and 0.34, respectively, P<0.05). The expression of USP7 in CESC, HNSC, LUSC, and SKCM was significantly positively correlated with the expression of DNMT1, DNMT3A, and DNMT3B (with Spearman correlation coefficients of 0.42, 0.34, 0.22, 0.45, 0.52, 0.22, 0.36, 0.36, 0.22, 0.38, 0.46, and 0.21, respectively, P<0.05). The expression of USP7 in CESC, HNSC, LUSC, and SKCM was positively correlated with CD4 + T cell infiltration (with Partial correlation coefficients of 0.14, 0.22, 0.13, and 0.16, respectively, P<0.05). Being similar to the pattern of USP7 expression and ranked among top 100 protein sets, the top 5 proteins were C16orf72, BCLAF1, UBN, GSPT1, ERI2 (with Spearman correlation coefficients of 0.83, 0.74, 0.73, and 0.72, respectively, all P values<0.05). The top 50 protein sets that directly physically bind to USP7 overlapped with the aforementioned protein set by only one protein, thyroid hormone receptor interaction factor 12. KEGG enrichment analysis showed that USP7 related genes were involved in cell cycle, spliceosome, cell senescence, and p53 signal pathway. GO enrichment analysis showed that USP7 related genes were involved in transcriptional regulation, protein ubiquitination, DNA repair, and cytoplasmic pattern recognition receptor signal pathways. Analysis of clinical samples showed that USP7 expression was significantly higher in hypertrophic scars (0.35±0.05), scar ulcers (0.43±0.04), and scar cancers (0.61±0.03) than in normal skin (0.18±0.04), P<0.05. Conclusions USP7 may be a clinical biomarker for the progression of cicatricial ulcer cancer. -
Key words:
- Skin neoplasms /
- Cicatrix /
- Ubiquitin-specific protease 7 /
- Pan-cancer analysis /
- Scar ulcer /
- Cicatricial carcinoma /
- Wound repair
-
(1)详述了游离颞浅筋膜瓣/股前外侧筋膜瓣的切取层次和获取经验,具有临床参考价值。
(2)针对游离筋膜瓣术后血运观察困难等问题,提出了多种新颖且实用的应对方法,具有启发意义。
手足、胫前、踝后区等部位皮下软组织菲薄,在遭遇烧创伤时极易造成肌腱、血管及骨质的外露,若修复不佳,会对患者的感觉与运动功能以及外观产生严重影响 [ 1] 。对于上述区域内较小的组织缺损,利用创面周围的局部皮瓣或岛状皮瓣修复,效果较好;但对于较大的深度组织缺损,临床上常采用游离皮瓣等进行修复。对于手指、足趾、踝后、胫前、足背等特殊部位的创面而言,即使采用穿支皮瓣修复并对皮瓣上的脂肪进行大量修剪,术后外观仍然较臃肿,后期常需行多次去脂塑形手术,给患者造成沉重负担 [ 2] 。随着临床医学发展和外科技术革新,利用筋膜组织制备筋膜瓣,为此类创面的修复带来了新选择。10余年来,本团队对手足、胫前和踝后区域的复杂深度组织缺损创面,采用游离颞浅筋膜瓣/股前外侧筋膜瓣结合刃厚皮片移植的方法进行修复,取得了较佳效果 [ 3, 4, 5, 6, 7] 。
1. 游离颞浅筋膜瓣/股前外侧筋膜瓣的解剖和手术方法
筋膜组织是人体重要的结缔组织,位于皮肤与肌肉之间,主要由皮下疏松结缔组织构成的浅筋膜和浅筋膜深层致密结缔组织构成的深筋膜组成。浅筋膜内主要包含脂肪、浅血管、淋巴和皮神经等组织 [ 8] 。而在深筋膜的深、浅面,穿动脉、皮下动脉和筋膜下动脉主干及分支交互吻合,形成了四通八达的血管网,为筋膜组织提供了丰富的血供。3个动脉系统中的1个动脉系统血供被中断不会影响筋膜组织的总体血供,这是利用筋膜组织制备筋膜瓣应用于临床的重要解剖学基础 [ 9, 10] 。
1.1 颞浅筋膜瓣的解剖和切取
颞浅筋膜也被称为颞顶筋膜,在颞区位于头皮和皮下组织之下,其深面由浅至深依次为含微血管的疏松结缔组织间隙、颞深筋膜、颞肌和颅骨外膜 [ 11] 。颞浅筋膜前与额肌、眼轮匝肌相连,后与枕肌、耳后肌相连,上与颅顶帽状腱膜相延续,上达颅顶、下至颧弓。颞浅筋膜在顶区与头皮连接紧密,不易分开;在颞区则较易与皮肤解剖游离开。在颞浅筋膜深面,因疏松结缔组织间隙的存在使颞浅筋膜易与颞深筋膜解剖分离。颞浅筋膜主要由走行于其内的颞浅动脉及其终末分支额支和顶支供血。颞浅动脉自颈外动脉发出后,于外耳道软骨和颞下颌关节囊之间的浅筋膜浅出,行至颧弓上约2 cm处以约60°夹角分出额支和顶支,沿途发出许多分支形成动脉吻合网。颞浅静脉多数走行于颞浅动脉浅面后方,末端注入下颌后静脉,但其变异较多,回流常不恒定 [ 12, 13] 。
切取颞浅筋膜瓣术前可使用多普勒超声血流探测仪测定颞浅动脉走行并标记。于耳屏前上方沿颞浅动脉走行向颞顶部做纵行切口,显露颞浅动静脉后向颞顶部延长切口。根据所需修复创面大小,可在颞顶部将切口末端设计为“T”形或“Y”形,以便显露分离颞浅筋膜。颞浅筋膜瓣切取层次浅面为毛囊下层,深面为颞深筋膜上层。颞浅筋膜深面与颞深筋膜存在疏松结缔组织间隙,切取时较易分离。在明确颞浅筋膜的大小及层次后,可从其上缘切开向下逆行切取,分离形成含有颞浅动静脉的筋膜瓣 [ 14] 。
1.2 股前外侧筋膜瓣的解剖和切取
股前外侧皮瓣现已被广泛应用于临床,其主要供血动脉为旋股外侧动脉降支及其穿支血管。股前外侧筋膜瓣相较于股前外侧皮瓣少切取了皮肤和皮下组织,保留了旋股外侧动静脉降支及其穿支血管、阔筋膜和部分浅筋膜。旋股外侧动脉降支在股外侧肌和股中间肌之间向下走行,通常在以髂髌线中点为中心、半径约5 cm的圆的外下象限内发出大的股外侧肌皮穿支或肌间隙皮支。旋股外侧动脉降支第1肌皮穿支最为粗大,通常作为股前外侧皮瓣及筋膜瓣的供血血管。旋股外侧动脉降支多数有2条伴行静脉,且所有的肌皮动脉穿支都有伴行静脉,多数为1条 [ 15] 。
股前外侧筋膜瓣的血管主要为层状分布,在各层中轴形血管分布由浅入深,长度逐渐变短,最终形成真皮下血管网,轴形血管和真皮下血管网组合构成典型的树枝状三维结构 [ 16] 。因此术中可以大胆地由浅面向深面剔除筋膜瓣多余的脂肪,而不影响筋膜瓣的血运。由此可以确定股前外侧筋膜瓣深面切取层次为阔筋膜下,并可根据创面需求携带部分肌肉。浅面切取层次最上层可达真皮下血管网下层,由此获取的即为股前外侧脂肪筋膜瓣;浅面切取层次最下层为阔筋膜上层,由此获取的即为阔筋膜瓣 [ 17] 。临床上在应用股前外侧筋膜瓣时,可根据待修复创面缺损组织量决定筋膜瓣切取层次。股前外侧筋膜瓣切取前可先使用多普勒超声血流探测仪确定旋股外侧动脉降支穿支血管的浅出点,根据浅出点位置及受区缺损大小设计筋膜瓣切取范围。设计“T”形或“S”形切口切开皮肤后,于术前确定好的切取层次向周围分离皮肤及皮下组织至设计边缘,此后于设计的筋膜瓣外缘、上下缘向深部切取直至阔筋膜深面。掀起阔筋膜探查,确保旋股外侧动脉降支的肌皮穿支或肌间隙皮支进入筋膜瓣后,再切开筋膜瓣的内侧缘。此后沿筋膜瓣供血血管走行向近端解剖,直至显露旋股外侧动脉降支主干,分离周围组织形成含有旋股外侧动脉降支主干血管的筋膜瓣。
2. 游离筋膜瓣联合刃厚皮片的临床应用经验
2.1 游离筋膜瓣联合刃厚皮片移植的优点
筋膜瓣因其独特的解剖学和生理学特性,适用于部分特殊创面的修复。本团队采用游离筋膜瓣联合刃厚皮片移植的方法修复手指、足趾、手背、足背、踝后及胫前等皮下组织菲薄的区域,取得了良好的效果 [ 3, 4, 5, 6, 7] 。该修复方法具有以下独特的优势:(1)术后受区不臃肿,无须后期行去脂塑形手术。(2)筋膜瓣组织致密,在其表面植刃厚皮片罕见挛缩,外形美观。(3)对于肌腱外露的创面,因颞浅筋膜及阔筋膜深面含有大量的透明质酸,使用筋膜瓣覆盖创面更加符合组织学需求,在利于肌腱滑动的同时,可有效防止肌腱与周围组织粘连,有助于患者手足功能的康复。本团队采用股前外侧筋膜瓣(面积约9 cm×5 cm)联合头部刃厚皮片移植修复1例患者(女,32岁)左足背皮肤坏死创面(面积约为8 cm×4 cm),术后筋膜瓣及所植皮片均存活良好,足背外表平整、不臃肿,足功能恢复良好( 图1)。(4)对于关节囊及跟腱缺损的创面,筋膜瓣可在裁剪或折叠后修复创面并加强关节囊及跟腱,满足关节囊及跟腱修复后的组织强度要求和功能学需求 [ 18] 。(5)颞浅筋膜瓣及股前外侧筋膜瓣具有完整的动静脉循环系统,可保证丰富的血供,且具备良好的抗感染能力,可有效促进存在骨髓炎的感染性创面的愈合。本团队采用股前外侧筋膜瓣(面积约17 cm×5 cm)联合头部刃厚皮片移植修复1例患者(男,42岁)右侧胫前溃疡伴胫骨外露创面(面积约15 cm×4 cm),术后筋膜瓣及所植皮片均存活良好,术区外观平整,骨髓炎治愈( 图2)。(6)筋膜瓣柔软且易裁剪塑形,用其填塞手足不规则腔隙性创面,不会造成组织肥厚而影响功能。(7)糖尿病足患者末梢血运通常较差,行游离筋膜瓣移植,采取端侧吻合血管的方式相当于为糖尿病足溃疡患者末梢构建了新的血运,更有利于创面的远期恢复。(8)筋膜瓣切取后的供区皮肤无张力可直接缝合,术后瘢痕增生不明显,尤其是颞部筋膜瓣切取后,头发生长后可遮蔽切口,符合美学要求。
2.2 游离筋膜瓣联合刃厚皮片移植的术中操作难点和注意事项
游离筋膜瓣联合刃厚皮片移植的方法在临床实践中除了覆盖面积有限、游离操作对术者的手术技能要求较高等不足外,还存在诸多难点和注意事项。
游离移植筋膜瓣的血运观察困难。既往有术者在筋膜瓣游离移植后行换药处理,待筋膜瓣表面形成致密红色肉芽组织后再行Ⅱ期植皮手术 [ 19, 20] 。该方式虽有助于观察筋膜瓣血运,但也因需要Ⅱ期手术延长了治疗周期,给患者带来了额外的生理和经济负担。此外,亦有术者在筋膜瓣切取时采取保留远端部分皮瓣,进行半筋膜瓣半皮瓣移植修复创面 [ 21] 。该方式理论上血运监测方便,但实际应用价值有限,因为筋膜瓣本身切取范围有限,如果携带皮瓣过小,则血运观察仍很困难,如携带皮瓣范围过大,则不可避免会造成受区臃肿,失去了筋膜瓣的意义。针对此问题,本团队的实践经验如下:(1)在筋膜瓣切取时留取较长的血管蒂,使血管蒂部吻合区域超出筋膜瓣及皮片覆盖范围,从而有利于在术后早期使用多普勒超声血流探测仪动态监测所吻合血管的血流动力学变化,进而判断是否存在血管危象;(2)筋膜瓣上所植皮片推荐采用较薄的刃厚皮片,术后打包包扎并留置观察孔,通过观察孔定期观察皮片及皮片下筋膜瓣的颜色来确定筋膜瓣的血运情况。
为达到筋膜瓣超薄化的效果,股前外侧筋膜瓣的切取层次虽然可达阔筋膜浅面,但本团队更推荐尽量保留筋膜瓣上厚3~5 mm的脂肪组织,因为在此层次切取时不易损伤旋股外侧动静脉降支血管的穿支,有利于筋膜瓣的血液循环。如不保留脂肪组织,仅需获取阔筋膜,切取时也应注意保护阔筋膜表面菲薄的疏松结缔组织,该层结缔组织中包含阔筋膜表面的血管网,探查可见清晰的呈星状分布的血管穿出点,过多损伤该层结缔组织会影响阔筋膜的血液循环。而对于大腿脂肪偏少的患者而言,切取股前外侧筋膜瓣时还需避免筋膜层切取过厚导致供区皮肤坏死。
股前外侧筋膜瓣切取时,若阔筋膜切取宽度≤5 cm,剩余阔筋膜多可直接拉拢缝合覆盖封闭下层肌肉;但若切取宽度>5 cm,剩余阔筋膜可能难以拉拢缝合,若强行缝合易导致骨-筋膜室综合征,但若不对阔筋膜进行处理而直接缝合皮肤软组织封闭供瓣区,则术后易出现肌疝。本团队在切取宽度>5 cm的阔筋膜时,常规采用人工补片修补阔筋膜,有效防止了术后肌疝的发生。
颞浅筋膜瓣切取时,因头皮与浅筋膜间存在众多垂直纤维纵隔,在颞部毛囊下层分离颞浅筋膜时存在困难。若解剖层次判断不清,切取过浅易损伤毛囊,导致术后脱发;切取过深则易损伤颞浅筋膜血管网,从而影响血运。本团队的经验为,若切取层次判断存在困难时,可先在术区注射肿胀液以利于组织分离;也可根据顶部帽状腱膜向下与颞浅筋膜相延续的解剖学基础,采取先在顶部皮下显露部分帽状腱膜,再沿帽状腱膜向颞部分离的方式明确切取层次。此外,为了减少术后头皮切口线区域的脱发,术者在切开头皮时需严格保持垂直入路,避免斜行切入导致毛囊过度受损。
3. 小结
游离筋膜瓣联合刃厚皮片移植除具有游离皮瓣血运好、抗感染能力强的优点外,还具有组织柔软、纤薄、易裁剪,供区皮肤可直接缝合,功能影响小,受区外形美观、不臃肿,术后利于功能康复等众多优势。尤其是在大面积烧伤患者供区匮乏的情况下,该方式可有效解决患者的修复难题,具有较大的临床应用价值。
章思语:酝酿、设计和实施研究,采集、分析、解释数据,撰写文章;阮晶晶,金冬梅:采集、分析、解释数据,研究指导,对文章的知识性内容作批判性审阅;陈诺:采集数据,对文章的知识性内容作批判性审阅;谢卫国:分析、解释数据,对文章的知识性内容作批判性审阅;阮琼芳:对文章的知识性内容作批判性审阅,经费支持,研究指导所有作者均声明不存在利益冲突 -
参考文献
(23) [1] ShpichkaA, ButnaruD, BezrukovEA, et al. Skin tissue regeneration for burn injury[J]. Stem Cell Res Ther, 2019,10(1):94. DOI: 10.1186/s13287-019-1203-3. [2] BazalińskiD, Przybek-MitaJ, BarańskaB, et al. Marjolin's ulcer in chronic wounds - review of available literature[J]. Contemp Oncol (Pozn), 2017,21(3):197-202. DOI: 10.5114/wo.2017.70109. [3] ShenW, ZhangZ, MaJ, et al. The ubiquitin proteasome system and skin fibrosis[J]. Mol Diagn Ther, 2021,25(1):29-40. DOI: 10.1007/s40291-020-00509-z. [4] El AyadiA, JayJW, PrasaiA. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring[J]. Int J Mol Sci, 2020,21(3):1105.DOI: 10.3390/ijms21031105. [5] TorisevaM, KähäriVM. Proteinases in cutaneous wound healing[J]. Cell Mol Life Sci, 2009,66(2):203-224. DOI: 10.1007/s00018-008-8388-4. [6] NininahazweL, LiuB, HeC, et al. The emerging nature of Ubiquitin-specific protease 7 (USP7): a new target in cancer therapy[J]. Drug Discov Today, 2021,26(2):490-502. DOI: 10.1016/j.drudis.2020.10.028. [7] WangZ, KangW, YouY, et al. USP7: novel drug target in cancer therapy[J]. Front Pharmacol, 2019,10:427. DOI: 10.3389/fphar.2019.00427. [8] GuoL, ChenL, BiS, et al. PTEN inhibits proliferation and functions of hypertrophic scar fibroblasts[J]. Mol Cell Biochem, 2012,361(1/2):161-168. DOI: 10.1007/s11010-011-1100-2. [9] LiS, DingX, YanX, et al. ceAF ameliorates diabetic wound healing by alleviating inflammation and oxidative stress via TLR4/NF-κB and Nrf2 pathways[J]. J Diabetes Res, 2023,2023:2422303. DOI: 10.1155/2023/2422303. [10] MiaoC, LiY, ZhangX. The functions of FoxO transcription factors in epithelial wound healing[J]. Australas J Dermatol, 2019,60(2):105-109. DOI: 10.1111/ajd.12952. [11] HeT, BaiX, JingJ, et al. Notch signal deficiency alleviates hypertrophic scar formation after wound healing through the inhibition of inflammation[J]. Arch Biochem Biophys, 2020,682:108286. DOI: 10.1016/j.abb.2020.108286. [12] GannonHS, DonehowerLA, LyleS, et al. Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin[J]. Dev Biol, 2011,353(1):1-9. DOI: 10.1016/j.ydbio.2011.02.007. [13] GotoK, IshikawaM, AizawaD, et al. Nuclear β-catenin immunoexpression in scars[J]. J Cutan Pathol, 2021,48(1):18-23. DOI: 10.1111/cup.13806. [14] ChenZY, YuXF, HuangJQ, et al. The mechanisms of β‐catenin on keloid fibroblast cells proliferation and apoptosis[J]. Eur Rev Med Pharmacol Sci, 2018,22(4):888-895. DOI: 10.26355/eurrev_201802_14366. [15] ChenF, WendlMC, WyczalkowskiMA, et al. Moving pan-cancer studies from basic research toward the clinic[J]. Nat Cancer, 2021,2(9):879-890. DOI: 10.1038/s43018-021-00250-4. [16] ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes[J]. Nature, 2020,578(7793):82-93. DOI: 10.1038/s41586-020-1969-6. [17] HussainI, ul RehmanS, AfrozeD, et al. Mutational spectrum of conserved regions of TP53 and PTEN genes in Kangri cancer (of the skin) in the Kashmiri population[J]. Mutat Res, 2009,676(1/2):5-10. DOI: 10.1016/j.mrgentox.2009.02.011. [18] TengY, FanY, MaJ, et al. The PI3K/Akt pathway: emerging roles in skin homeostasis and a group of non-malignant skin disorders[J]. Cells, 2021,10(5):1219.DOI: 10.3390/cells10051219. [19] ChungJY, ChanMK, LiJS, et al. TGF-β signaling: from tissue fibrosis to tumor microenvironment[J]. Int J Mol Sci, 2021,22(14):7575.DOI: 10.3390/ijms22147575. [20] InnellaG, BonoraE, NeriI, et al. PTEN hamartoma tumor syndrome: skin manifestations and insights into their molecular pathogenesis[J]. Front Med (Lausanne), 2021,8:688105. DOI: 10.3389/fmed.2021.688105. [21] MorottiA, PanuzzoC, CrivellaroS, et al. BCR-ABL disrupts PTEN nuclear-cytoplasmic shuttling through phosphorylation-dependent activation of HAUSP[J]. Leukemia, 2014,28(6):1326-1333. DOI: 10.1038/leu.2013.370. [22] LuJ, ZhaoH, YuC, et al. Targeting Ubiquitin-specific protease 7 (USP7) in cancer: a new insight to overcome drug resistance[J]. Front Pharmacol, 2021,12:648491. DOI: 10.3389/fphar.2021.648491. [23] BrooksCL, LiM, HuM, et al. The p53--Mdm2--HAUSP complex is involved in p53 stabilization by HAUSP[J]. Oncogene, 2007,26(51):7262-7266. DOI: 10.1038/sj.onc.1210531. -
2 癌症基因组图谱数据库中泛素特异性蛋白酶7(USP7)mRNA表达水平分析的箱式图
注:TPM为样本中平均每一百万个转录本中对应特定基因或转录本的数量;横坐标上从左到右的数字依次代表肾上腺皮质癌、膀胱尿路上皮癌、乳腺浸润癌、乳腺浸润基底癌、人表皮生长因子受体阳性乳腺浸润癌、LumA乳腺浸润癌、LumB乳腺浸润癌、宫颈癌、胆管癌、结肠癌、弥漫性大B细胞淋巴瘤、食管癌、多形成性胶质细胞瘤、头颈鳞状细胞癌、人乳头瘤病毒阳性头颈鳞状细胞癌、人乳头瘤病毒阴性头颈鳞状细胞癌、肾嫌色细胞癌、肾透明细胞癌、肾乳头状细胞癌、急性髓细胞样白血病、脑低级别胶质瘤、肝细胞肝癌、肺腺癌、肺鳞状细胞癌、间皮瘤、卵巢浆液性囊腺癌、胰腺癌、嗜铬细胞瘤、前列腺癌、直肠腺癌、肉瘤、皮肤黑色素瘤、胃癌、睾丸癌、甲状腺癌、胸腺癌、子宫内膜癌、子宫肉瘤、葡萄膜黑色素瘤;红色代表肿瘤组织,蓝色代表正常对照组织,紫色代表癌转移组织;有对应正常组织/癌转移组织对照的癌种类背景色为灰色;与正常组织/癌转移组织相比,aP<0.05
4 泛癌中泛素特异性蛋白酶7(USP7)表达与肿瘤相关性的热图分析。4A.USP7表达与DNA错配修复基因表达的相关性分析;4B.USP7表达与DNA甲基转移酶基因表达的相关性分析
注:DNMT为DNA甲基转移酶;PMS2、MSH6、MSH2、MLH1和EPCAM指DNA错配修复基因对应的表达;图4A和图4B中横坐标上癌组织种类及排序相同,从左到右均依次为肾上腺皮质癌、膀胱尿路上皮癌、乳腺浸润癌、乳腺浸润基底癌、人表皮生长因子受体2阳性乳腺浸润癌、LumA乳腺浸润癌、LumB乳腺浸润癌、宫颈鳞状细胞癌、胆管癌、结肠癌、弥漫性大B细胞淋巴瘤、食管癌、多形成性胶质细胞瘤、头颈鳞状细胞癌、人乳头瘤病毒阳性头颈鳞状细胞癌、人乳头瘤病毒阴性头颈鳞状细胞癌、肾嫌色细胞癌、肾透明细胞癌、肾乳头状细胞癌、脑低级别胶质瘤、肝细胞肝癌、肺腺癌、肺鳞状细胞癌、间皮瘤、卵巢浆液性囊腺癌、胰腺癌、嗜铬细胞瘤、前列腺癌、直肠腺癌、肉瘤、皮肤黑色素瘤、转移性皮肤黑色素瘤、皮肤黑色素瘤原位癌、胃癌、睾丸癌、甲状腺癌、胸腺癌、子宫内膜癌、子宫肉瘤、葡萄膜黑色素瘤
5 泛癌中泛素特异性蛋白酶7相关信号通路的京都基因与基因组百科全书(KEGG)和基因本体论(GO)富集分析。5A.KEGG富集分析;5B.GO富集分析
注:FOX为叉头样转录因子,AMPK为腺苷一磷酸活化蛋白激酶;图5B横坐标从左到右依次为生物过程:蛋白质去泛素化、RNA PolⅡ启动子转录的负调控、RNA PolⅡ启动子转录的正调控、转录偶联核苷酸切除修复、病毒过程、蛋白质泛素化、泛素依赖性蛋白质分解代谢过程、转录正调控DNA模板化、DNA修复、细胞质模式识别受体信号通路,细胞组分:核浆、核、核斑点、胞质、染色质、核体、PcG蛋白复合物、核糖核蛋白复合物、染色体、转录抑制因子复合物,分子功能:染色质绑定、核糖核酸绑定、DNA结合、蛋白结合、启动子特异性染色质结合、泛素蛋白转移酶活性、锌离子结合、p53绑定、金属离子结合、组蛋白绑定
期刊类型引用(1)
1. 郑云,程良坤,崔留超,谭玉忠,田林. 游离骨间背动脉穿支皮瓣修复多指皮肤软组织缺损的临床疗效. 中华烧伤与创面修复杂志. 2024(05): 476-481 . 本站查看
其他类型引用(0)
-