留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶的制备及其对大鼠全层皮肤缺损创面愈合的作用

刘颖 程凤 王泽薇 金红旭 曹滨验 游平飞 胡安 史秀云 杜娟 苑志新

刘颖, 程凤, 王泽薇, 等. 负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶的制备及其对大鼠全层皮肤缺损创面愈合的作用[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 50-56. DOI: 10.3760/cma.j.cn501225-20230928-00101.
引用本文: 刘颖, 程凤, 王泽薇, 等. 负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶的制备及其对大鼠全层皮肤缺损创面愈合的作用[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 50-56. DOI: 10.3760/cma.j.cn501225-20230928-00101.
Liu Y,Cheng F,Wang ZW,et al.Preparation of chitin/hyaluronic acid/collagen hydrogel loaded with mouse adipose-derived stem cells and its effects on wound healing of full-thickness skin defects in rats[J].Chin J Burns Wounds,2024,40(1):50-56.DOI: 10.3760/cma.j.cn501225-20230928-00101.
Citation: Liu Y,Cheng F,Wang ZW,et al.Preparation of chitin/hyaluronic acid/collagen hydrogel loaded with mouse adipose-derived stem cells and its effects on wound healing of full-thickness skin defects in rats[J].Chin J Burns Wounds,2024,40(1):50-56.DOI: 10.3760/cma.j.cn501225-20230928-00101.

负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶的制备及其对大鼠全层皮肤缺损创面愈合的作用

doi: 10.3760/cma.j.cn501225-20230928-00101
基金项目: 

辽宁省博士科研启动基金 2023-BS-032

详细信息
    通讯作者:

    金红旭,Email:cszx_jhx@163.com

    杜娟,Email:dujuan0512@126.com

Preparation of chitin/hyaluronic acid/collagen hydrogel loaded with mouse adipose-derived stem cells and its effects on wound healing of full-thickness skin defects in rats

Funds: 

Doctoral Research Foundation of Liaoning Province of China 2023-BS-032

More Information
  • 摘要:   目的   制备负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶并探讨其对大鼠全层皮肤缺损创面愈合的作用。   方法   该研究为实验研究。通过酸水解碱的方法提取甲壳素纳米纤维,将提取物与透明质酸和胶原混合制备甲壳素/透明质酸/胶原水凝胶(以下简称水凝胶),另制备负载小鼠脂肪干细胞的水凝胶。将30只雄性12周龄豚鼠按照随机数字表法分为阴性对照组、阳性对照组和水凝胶组(每组10只),分别在豚鼠背部两侧涂抹乙醇、4-氨基苯甲酸乙酯、前述制备的不含细胞的水凝胶进行诱导接触和激发接触,于激发接触后24、48 h观察皮肤水肿和红斑形成情况。将小鼠脂肪干细胞分为行常规培养的正常对照组和用前述制备的不含细胞的水凝胶培养的水凝胶组,培养3 d,采用蛋白质印迹法检测血小板衍生生长因子-D(PDGF-D)、胰岛素样生长因子Ⅰ(IGF-Ⅰ)、转化生长因子β 1(TGF-β 1)的蛋白表达(样本数均为3)。取8只雄性8周龄SD大鼠,在其背部两侧各制备1个圆形全层皮肤缺损创面,分别作为空白对照组(不进行任何处理)和水凝胶组(涂抹前述制备的负载脂肪干细胞的水凝胶)。伤后0(即刻)、2、4、8、10 d,观察创面愈合情况并计算伤后2、4、8、10 d的创面愈合率。取伤后10 d创面组织,行苏木精-伊红染色观察新生组织形成情况,采用酶联免疫吸附测定法检测白细胞介素1α(IL-1α)、IL-6、IL-4和IL-10的浓度,行免疫组织化学染色观察CD16、CD206阳性细胞表达并计算阳性细胞百分比。动物实验样本数均为8。   结果   激发接触后24 h,3组豚鼠皮肤均无水肿形成,仅阳性对照组7只豚鼠皮肤出现轻微红斑。激发接触后48 h,阳性对照组8只豚鼠皮肤出现红斑,4只豚鼠皮肤出现水肿;其余2组豚鼠皮肤无明显红斑或水肿。培养3 d,水凝胶组脂肪干细胞中PDGF-D、IGF-Ⅰ和TGF-β 1的蛋白表达水平均明显高于正常对照组( t值分别为12.91、11.83、7.92, P<0.05)。伤后0~10 d,2组创面面积均逐渐缩小,水凝胶组创面于伤后10 d基本愈合。伤后4、8、10 d,水凝胶组创面愈合率分别为(38±4)%、(54±5)%、(69±6)%,分别明显高于空白对照组的(21±6)%、(29±7)%、(31±7)%( t值分别为3.82、3.97、4.05, P值均<0.05)。伤后10 d,与空白对照组比较,水凝胶组创面表皮更加完整,毛囊、血管和其他皮肤附件增多。伤后10 d,水凝胶组创面组织中IL-1α、IL-6浓度均较空白对照组明显降低( t值分别为8.21、7.99, P<0.05),IL-4、IL-10浓度均较空白对照组明显升高( t值分别为6.57、9.03, P<0.05);水凝胶组创面组织中CD16阳性细胞百分比较空白对照组明显降低( t=8.02, P<0.05),CD206阳性细胞百分比较空白对照组明显升高( t=7.21, P<0.05)。   结论   负载小鼠脂肪干细胞的水凝胶无致敏性,能促进脂肪干细胞中生长因子分泌,促进大鼠全层皮肤缺损创面组织中巨噬细胞向M2型极化,减轻炎症反应,从而促进创面愈合。

     

  • 1  伤后各时间点2组全层皮肤缺损大鼠创面愈合情况。1A、1B、1C、1D、1E.分别为空白对照组伤后0(即刻)、2、4、8、10 d创面情况;1F、1G、1H、1I、1J.分别为水凝胶组伤后0、2、4、8、10 d创面情况,图1H、1I、1J创面面积分别小于图1C、1D、1E

    注:空白对照组创面不进行任何处理,水凝胶组创面涂抹负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶

    2  伤后10 d 2组全层皮肤缺损大鼠创面新生组织情况 苏木精-伊红×100。2A.空白对照组皮肤附件较少;2B.水凝胶组皮肤附件较图2A增多,新生表皮较图2A更完整

    注:空白对照组创面不进行任何处理,水凝胶组创面涂抹负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶;图2B中箭头指示皮肤附件,2条虚线间为新生表皮

    3  2组全层皮肤缺损大鼠伤后10 d创面组织中CD16和CD206阳性细胞情况 二氨基联苯胺-苏木精×400。3A.空白对照组CD16阳性表达多;3B.水凝胶组CD16阳性表达,较图3A明显减少;3C.空白对照组CD206阳性表达少;3D.水凝胶组CD206阳性表达,较图3C增多

    注:空白对照组创面不进行任何处理,水凝胶组创面涂抹负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶;CD16和CD206阳性表达均为棕色

    表1  培养3 d的2组小鼠脂肪干细胞中3种生长因子的蛋白表达比较( x ¯ ± s

    表1.   Comparison of protein expressions of three growth factors in two groups of mouse adipose-derived stem cells after 3 d of culture

    组别 样本数 PDGF-D IGF-Ⅰ TGF-β 1
    正常对照组 3 0.58±0.11 0.18±0.09 0.29±0.13
    水凝胶组 3 1.23±0.09 0.73±0.04 0.72±0.11
    t 12.91 11.83 7.92
    P <0.001 <0.001 <0.001
    注:正常对照组细胞进行常规培养,水凝胶组细胞采用甲壳素/透明质酸/胶原水凝胶培养;PDGF-D为血小板衍生生长因子-D,IGF-Ⅰ为胰岛素样生长因子Ⅰ,TGF-β 1为转化生长因子β 1
    下载: 导出CSV

    表2  伤后各时间点2组全层皮肤缺损大鼠创面愈合率比较(%, x ¯ ± s

    表2.   Comparison of wound healing rates in two groups of rats with full-thickness skin defects at various time points after injury

    组别 样本数 2 d 4 d 8 d 10 d
    空白对照组 8 18±5 21±6 29±7 31±7
    水凝胶组 8 18±3 38±4 54±5 69±6
    t 0.88 3.82 3.97 4.05
    P 0.351 0.003 0.001 <0.001
    注:空白对照组创面不进行任何处理,水凝胶组创面涂抹负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶;处理因素主效应, F=103.37, P<0.001;时间因素主效应, F=171.90, P<0.001;两者交互作用, F=54.61, P<0.001
    下载: 导出CSV

    表3  伤后10 d 2组全层皮肤缺损大鼠创面组织中炎症因子浓度比较(pg/mL, x ¯ ± s

    表3.   Comparison of concentrations of inflammatory factors in wound tissue of two groups of rats with full-thickness skin defects at 10 d after injury

    组别 样本数 IL-1α IL-6 IL-4 IL-10
    空白对照组 8 26.7±2.3 39.4±1.7 19.1±1.9 55.1±8.7
    水凝胶组 8 17.1±2.1 18.7±1.1 28.9±1.3 89.8±1.1
    t 8.21 7.99 6.57 9.03
    P <0.001 <0.001 <0.001 <0.001
    注:空白对照组创面不进行任何处理,水凝胶组创面涂抹负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶;IL为白细胞介素
    下载: 导出CSV
  • [1] QiL,ZhangC,WangB,et al.Progress in hydrogels for skin wound repair[J].Macromol Biosci,2022,22(7):e2100475.DOI: 10.1002/mabi.202100475.
    [2] 郑力铭,刘钟元,颜鸿宇,等.小檗碱对糖尿病小鼠全层皮肤缺损创面愈合的影响及其机制[J].中华烧伤与创面修复杂志,2023,39(11):1072-1082.DOI: 10.3760/cma.j.cn501225-20230411-00120.
    [3] van DongenJA,HarmsenMC,van der LeiB,et al.Augmentation of dermal wound healing by adipose tissue-derived stromal cells (ASC)[J].Bioengineering (Basel),2018,5(4):91. DOI: 10.3390/bioengineering5040091.
    [4] AzamM,GhufranH,ButtH,et al.Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds[J/OL].Burns Trauma,2021,9:tkab021[2023-09-28].https://pubmed.ncbi.nlm.nih.gov/34514007/.DOI: 10.1093/burnst/tkab021.
    [5] HouL,ZhangX,DuH.Advances in mesenchymal stromal cells and nanomaterials for diabetic wound healing[J].Diabetes Metab Res Rev,2023,39(4):e3638.DOI: 10.1002/dmrr.3638.
    [6] MaziniL,RochetteL,AdmouB,et al.Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing[J].Int J Mol Sci,2020,21(4):1306.DOI: 10.3390/ijms21041306.
    [7] XiaS,WengT,JinR,et al.Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds[J/OL].Burns Trauma,2022,10:tkac001[2023-09-28].https://pubmed.ncbi.nlm.nih.gov/35291229/.DOI: 10.1093/burnst/tkac001.
    [8] BaharloueiP,RahmanA.Chitin and chitosan: prospective biomedical applications in drug delivery, cancer treatment, and wound healing[J].Mar Drugs,2022,20(7):460.DOI: 10.3390/md20070460.
    [9] KafiMA,AktarMK,PhannyY,et al.Adhesion, proliferation and differentiation of human mesenchymal stem cell on chitosan/collagen composite scaffold[J].J Mater Sci Mater Med,2019,30(12):131.DOI: 10.1007/s10856-019-6341-8.
    [10] 李伟,孔维诗,包郁露,等.负载脂肪干细胞的皮肤组织工程支架在创面修复中的研究进展[J].中华烧伤与创面修复杂志,2023,39(11):1090-1095.DOI: 10.3760/cma.j.cn501225-20221123-00502.
    [11] PrasathkumarM,SadhasivamS.Chitosan/hyaluronic acid/alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-know-how[J].Int J Biol Macromol,2021,186:656-685.DOI: 10.1016/j.ijbiomac.2021.07.067.
    [12] LiQ,ZhaoH,ChenW,et al.Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis[J].Int J Biochem Cell Biol,2019,114:105570.DOI: 10.1016/j.biocel.2019.105570.
    [13] LiuY,LiuY,WuM,et al.Adipose-derived mesenchymal stem cell-loaded β-chitin nanofiber hydrogel promote wound healing in rats[J].J Mater Sci Mater Med,2022,33(2):12.DOI: 10.1007/s10856-021-06630-7.
    [14] AlanS,ŞalvaE,Yılmazİ,et al.The effectiveness of chitosan-mediated silencing of PDGF-B and PDGFR-β in the mesangial proliferative glomerulonephritis therapy[J].Exp Mol Pathol,2019,110:104280.DOI: 10.1016/j.yexmp.2019.104280.
    [15] SalehH,El-ShorbagyHM.Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β expression[J].Int J Biol Macromol,2020,164:1565-1574.DOI: 10.1016/j.ijbiomac.2020.07.212.
    [16] van SteenbergheM,SchubertT,GuiotY,et al.Improvement of mesh recolonization in abdominal wall reconstruction with adipose vs. bone marrow mesenchymal stem cells in a rodent model[J].J Pediatr Surg,2017,52(8):1355-1362.DOI: 10.1016/j.jpedsurg.2016.11.041.
    [17] RavishankarK,VenkatesanM,DesinghRP,et al.Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications[J].Mater Sci Eng C Mater Biol Appl,2019,102:447-457.DOI: 10.1016/j.msec.2019.04.038.
    [18] LiangY,ZhaoX,HuT,et al.Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing[J].Small,2019,15(12):e1900046.DOI: 10.1002/smll.201900046.
    [19] NiZ,YuH,WangL,et al.Polyphosphazene and non-catechol-based antibacterial injectable hydrogel for adhesion of wet tissues as wound dressing[J].Adv Healthc Mater,2022,11(1):e2101421.DOI: 10.1002/adhm.202101421.
    [20] DavisFM,GallagherKA.Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease[J].Arterioscler Thromb Vasc Biol,2019,39(4):623-634.DOI: 10.1161/ATVBAHA.118.312135.
    [21] ShiC,YuanF,LiZ,et al.MSN@IL-4 sustainingly mediates macrophagocyte M2 polarization and relieves osteoblast damage via NF-κB pathway-associated apoptosis[J].Biomed Res Int,2022,2022:2898729.DOI: 10.1155/2022/2898729.
    [22] YangT,TanY,ZhangW,et al.Effects of ALA-PDT on the healing of mouse skin wounds infected with pseudomonas aeruginosa and its related mechanisms[J].Front Cell Dev Biol,2020,8:585132.DOI: 10.3389/fcell.2020.585132.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  64
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28

目录

    /

    返回文章
    返回