留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于创面修复的胶原基生物材料的研究进展

董祖琴 陈亚芳 梁洁 樊渝江

董祖琴, 陈亚芳, 梁洁, 等. 用于创面修复的胶原基生物材料的研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 90-95. DOI: 10.3760/cma.j.cn501225-20231026-00136.
引用本文: 董祖琴, 陈亚芳, 梁洁, 等. 用于创面修复的胶原基生物材料的研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 90-95. DOI: 10.3760/cma.j.cn501225-20231026-00136.
Dong ZQ,Chen YF,Liang J,et al.Research advances of collagen-based biomaterials in wound repair[J].Chin J Burns Wounds,2024,40(1):90-95.DOI: 10.3760/cma.j.cn501225-20231026-00136.
Citation: Dong ZQ,Chen YF,Liang J,et al.Research advances of collagen-based biomaterials in wound repair[J].Chin J Burns Wounds,2024,40(1):90-95.DOI: 10.3760/cma.j.cn501225-20231026-00136.

用于创面修复的胶原基生物材料的研究进展

doi: 10.3760/cma.j.cn501225-20231026-00136
基金项目: 

国家重点研发计划项目 2022YFC2401800

国家自然科学基金面上项目 51973136

四川省科技计划项目 2023NSFSC0996

详细信息
    通讯作者:

    樊渝江,Email:fan_yujiang@scu.edu.cn

Research advances of collagen-based biomaterials in wound repair

Funds: 

National Key Research and Development Program of China 2022YFC2401800

General Program of National Natural Science Foundation of China 51973136

Sichuan Science and Technology Plan Program 2023NSFSC0996

More Information
  • 摘要: 急性或慢性创面是常见的临床问题。胶原蛋白因具有来源丰富、生物相容性良好、免疫原性低以及可生物降解等诸多优点,被广泛用于创面修复的基础研究和临床治疗,具有广阔的临床应用前景。该文简要回顾胶原蛋白在创面愈合相关的不同生物学过程中的作用,对胶原蛋白的来源进行了概述;此外,该文还总结了基于胶原蛋白的创面敷料在创面修复领域中的应用情况及最新研究进展。

     

  • 参考文献(55)

    [1] GaoY, SunW, ZhangY, et al. All-aqueous microfluidics fabrication of multifunctional bioactive microcapsules promotes wound healing [J]. ACS Appl Mater Interfaces, 2022, 14(43):48426-48437. DOI: 10.1021/acsami.2c13420.
    [2] AdamiakK, SionkowskaA. Current methods of collagen cross-linking: review[J]. Int J Biol Macromol, 2020, 161:550-560. DOI: 10.1016/j.ijbiomac.2020.06.075.
    [3] 刘小刚,陈蕾,李海航,等. 天然与重组胶原蛋白在创面修复中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10):978-982. DOI: 10.3760/cma.j.cn501120-20211123-00394.
    [4] WangY, ZhangY, LiT, et al. Adipose mesenchymal stem cell derived exosomes promote keratinocytes and fibroblasts embedded in collagen/platelet-rich plasma scaffold and accelerate wound healing[J]. Adv Mater, 2023, 35(40):e2303642. DOI: 10.1002/adma.202303642.
    [5] Davison-KotlerE, MarshallWS, García-GaretaE. Sources of collagen for biomaterials in skin wound healing[J]. Bioengineering (Basel), 2019, 6(3):56. DOI: 10.3390/bioengineering6030056.
    [6] SolomonovI, ZehoraiE, Talmi-FrankD, et al. Distinct biological events generated by ECM proteolysis by two homologous collagenases[J]. Proc Natl Acad Sci U S A, 2016, 113(39):10884-10889. DOI: 10.1073/pnas.1519676113.
    [7] YinH, LiuN, ZhouX, et al. The advance of CCN3 in fibrosis[J]. J Cell Commun Signal, 2023,17(4):1219-1227. DOI: 10.1007/s12079-023-00778-3.
    [8] PiperigkouZ, GötteM, TheocharisAD, et al. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing[J]. Adv Drug Deliv Rev, 2018,129:16-36. DOI: 10.1016/j.addr.2017.10.008.
    [9] MakuszewskaM, BondaT, CieślińskaM, et al. Expression of collagen type Ⅲ in healing tympanic membrane[J]. Int J Pediatr Otorhinolaryngol, 2020,136:110196. DOI: 10.1016/j.ijporl.2020.110196.
    [10] WangC, BrissonBK, TerajimaM, et al. Type Ⅲ collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus[J]. Matrix Biol, 2020,85-86:47-67. DOI: 10.1016/j.matbio.2019.10.001.
    [11] BacciS. Fine regulation during wound healing by mast cells, a physiological role not yet clarified[J]. Int J Mol Sci, 2022, 23(3):1820. DOI: 10.3390/ijms23031820.
    [12] ShookB, XiaoE, KumamotoY, et al. CD301b+ macrophages are essential for effective skin wound healing[J]. J Invest Dermatol, 2016, 136(9):1885-1891. DOI: 10.1016/j.jid.2016.05.107.
    [13] RodriguesM, KosaricN, BonhamCA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019,99(1):665-706. DOI: 10.1152/physrev.00067.2017.
    [14] WilkinsonHN, HardmanMJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9):200223. DOI: 10.1098/rsob.200223.
    [15] Mathew-SteinerSS, RoyS, SenCK. Collagen in wound healing[J]. Bioengineering (Basel), 2021,8(5):63.DOI: 10.3390/bioengineering8050063.
    [16] LiR, LiuK, HuangX, et al. Bioactive materials promote wound healing through modulation of cell behaviors[J]. Adv Sci (Weinh), 2022,9(10):e2105152. DOI: 10.1002/advs.202105152.
    [17] KislingA, LustRM, KatwaLC. What is the role of peptide fragments of collagen Ⅰ and Ⅳ in health and disease?[J]. Life Sci, 2019,228:30-34. DOI: 10.1016/j.lfs.2019.04.042.
    [18] DariS, FadaiNT, O'DeaRD. Modelling the effect of matrix metalloproteinases in dermal wound healing[J]. Bull Math Biol, 2023, 85(10):96. DOI: 10.1007/s11538-023-01195-8.
    [19] HuMS, MaanZN, WuJC, et al. Tissue engineering and regenerative repair in wound healing[J]. Ann Biomed Eng, 2014,42(7):1494-1507. DOI: 10.1007/s10439-014-1010-z.
    [20] JiangX, WangY, FanD, et al. A novel human-like collagen hemostatic sponge with uniform morphology, good biodegradability and biocompatibility[J]. J Biomater Appl, 2017,31(8):1099-1107. DOI: 10.1177/0885328216687663.
    [21] Mammadova-BachE, Gil-PulidoJ, SarukhanyanE, et al. Platelet glycoprotein Ⅵ promotes metastasis through interaction with cancer cell-derived galectin-3[J]. Blood, 2020, 135(14):1146-1160. DOI: 10.1182/blood.2019002649.
    [22] SchwarzD, LipoldováM, ReineckeH, et al. Targeting inflammation with collagen[J]. Clin Transl Med, 2022,12(5):e831. DOI: 10.1002/ctm2.831.
    [23] ZhangY, WangY, LiY, et al. Application of collagen-based hydrogel in skin wound healing[J]. Gels, 2023, 9(3):185. DOI: 10.3390/gels9030185.
    [24] DasP, MannaS, RoyS, et al. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review[J/OL]. Burns Trauma, 2023,11:tkac058[2023-10-26]. https://pubmed.ncbi.nlm.nih.gov/36761088/. DOI: 10.1093/burnst/tkac058.
    [25] DuCheyne C, TayH, De SpiegelaereW. The complex TIE between macrophages and angiogenesis[J]. Anat Histol Embryol, 2020, 49(5):585-596. DOI: 10.1111/ahe.12518.
    [26] MarnerosAG, OlsenBR. The role of collagen-derived proteolytic fragments in angiogenesis[J]. Matrix Biol, 2001, 20(5/6):337-345. DOI: 10.1016/s0945-053x(01)00151-2.
    [27] DarbyIA, LaverdetB, BontéF, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clin Cosmet Investig Dermatol, 2014,7:301-311. DOI: 10.2147/CCID.S50046.
    [28] GeahchanS, BaharloueiP, RahmanA. Marine collagen: a promising biomaterial for wound healing, skin anti-aging, and bone regeneration[J]. Mar Drugs, 2022, 20(1):61. DOI: 10.3390/md20010061.
    [29] BhartiS, MonikaV, AnandK, et al. Natural polymers used in the dressing materials for wound healing: past, present and future[J]. J Polym Sci, 2023, 1:1-26. DOI: 10.1002/pol.20220734.
    [30] SalvatoreL, GalloN, AielloD, et al. An insight on type Ⅰ collagen from horse tendon for the manufacture of implantable devices[J]. Int J Biol Macromol, 2020, 154:291-306. DOI: 10.1016/j.ijbiomac.2020.03.082.
    [31] PanggabeanJA, SbPAdiguna, HardhiyunaM, et al. Cutting edge aquatic-based collagens in tissue engineering[J]. Mar Drugs, 2023, 21(2):87. DOI: 10.3390/md21020087.
    [32] SubhanF, HussainZ, TauseefI, et al. A review on recent advances and applications of fish collagen[J]. Crit Rev Food Sci Nutr, 2021,61(6):1027-1037. DOI: 10.1080/10408398.2020.1751585.
    [33] LeeEH, ChunSY, LeeJN, et al. Optimized collagen extraction process to obtain high purity and large quantity of collagen from human perirenal adipose tissue[J]. Biomed Res Int, 2022, 1040/8398:1027-1037. DOI: 10.1080/10408398.2020.1751585.
    [34] YouS, LiuS, DongX, et al. Intravaginal administration of human type Ⅲ collagen-derived biomaterial with high cell-adhesion activity to treat vaginal atrophy in rats[J]. ACS Biomater Sci Eng, 2020,6(4):1977-1988. DOI: 10.1021/acsbiomaterials.9b01649.
    [35] HabibiS, MohammadiT, HMTShiraziR, et al. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: preparation, characterization, and controlled drug release[J]. Int J Biol Macromol, 2023,240:124399. DOI: 10.1016/j.ijbiomac.2023.124399.
    [36] 杨加敏,胥义,党航宇,等.组织器官脱细胞支架的制备及研究进展[J].生物工程学报, 2022, 38(6): 2169-2186. DOI: 10.13345/j.cjb.210772.
    [37] ZhangQ, ChangC, QianC, et al. Photo-crosslinkable amniotic membrane hydrogel for skin defect healing[J]. Acta Biomater, 2021, 125:197-207. DOI: 10.1016/j.actbio.2021.02.043.
    [38] ZhangQY, TanJ, NieR, et al. Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation[J]. Compos Part B-Eng, 2023, 2554:110550. DOI: 10.1016/j.compositesb.2023.110550.
    [39] LiD, SunWQ, WangT, et al. Evaluation of a novel tilapia-skin acellular dermis matrix rationally processed for enhanced wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2021,127:112202. DOI: 10.1016/j.msec.2021.112202.
    [40] YangC, ZhangY, ZhangX, et al. An injectable, self-healing, and antioxidant collagen- and hyaluronic acid-based hydrogel mediated with gallic acid and dopamine for wound repair[J]. Carbohydr Polym, 2023,320:121231. DOI: 10.1016/j.carbpol.2023.121231.
    [41] ZhangM, DengF, TangL, et al. Super-ductile, injectable, fast self-healing collagen-based hydrogels with multi-responsive and accelerated wound-repair properties[J]. Chem Eng J, 2020, 405:126756. DOI: 10.1016/j.cej.2020.126756.
    [42] BaltazarT, MerolaJ, CatarinoC, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells[J]. Tissue Eng Part A, 2020, 26(5/6):227-238. DOI: 10.1089/ten.TEA.2019.0201.
    [43] GriffithsM, OjehN, LivingstoneR, et al. Survival of Apligraf in acute human wounds[J]. Tissue Eng, 2004,10(7/8):1180-1195. DOI: 10.1089/ten.2004.10.1180.
    [44] ZhangZ, FengY, WangL, et al. A review of preparation methods of porous skin tissue engineering scaffolds[J]. Mater Today Commun, 2022, 32:104109. DOI: 10.1016/j.mtcomm.2022.104109.
    [45] QiLH, MuLX, GuoXJ, et al. Fast expandable chitosan-fibers cryogel from ambient drying for noncompressible bleeding control and in situ tissue regeneration[J]. Adv Funct Mater, 2023, 33:2212231. DOI: 10.1002/adfm.202212231.
    [46] LiuW, YangC, GaoR, et al. Polymer composite sponges with inherent antibacterial, hemostatic, inflammation-modulating and proregenerative performances for methicillin-resistant Staphylococcus aureus-infected wound healing[J]. Adv Healthc Mater, 2021,10(22):e2101247. DOI: 10.1002/adhm.202101247.
    [47] ChenA, AnY, HuangW, et al. Highly water-preserving zwitterionic betaine-incorporated collagen sponges with anti-oxidation and anti-inflammation for wound regeneration[J]. Front Cell Dev Biol, 2020,8:491. DOI: 10.3389/fcell.2020.00491.
    [48] KumarM, HillesAR, GeY, et al. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: their current status with regulatory perspective[J]. Int J Biol Macromol, 2023, 234:123696. DOI: 10.1016/j.ijbiomac.2023.123696.
    [49] AntmenE, VranaNE, HasirciV. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures[J]. Biomater Sci, 2021, 9(24):8090-8110. DOI: 10.1039/d1bm00840d.
    [50] HuC, ChuC, LiuL, et al. Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing[J]. Sci Adv, 2021, 7(22):eabf0787. DOI: 10.1126/sciadv.abf0787.
    [51] ZouY, ZhouC, LiZ, et al. Hydrophobic tetracycline immobilized in fibrous hyaluronan regulates adhesive collagen-based hydrogel stability for infected wound healing[J]. Small, 2023,19(45):e2303414. DOI: 10.1002/smll.202303414.
    [52] ChenY, YuanZ, SunW, et al. Vascular endothelial growth factor-recruiting nanofiber bandages promote multifunctional skin regeneration via improved angiogenesis and immunomodulation[J]. Adv Fiber Mater, 2022, 5:327-348. DOI: 10.1007/s42765-022-00226-8.
    [53] AndonegiM, HerasKL, Santos-VizcaínoE, et al. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications[J]. Carbohydr Polym, 2020,237:116159. DOI: 10.1016/j.carbpol.2020.116159.
    [54] LengQ, LiY, PangX, et al. Curcumin nanoparticles incorporated in PVA/collagen composite films promote wound healing[J]. Drug Deliv, 2020, 27(1):1676-1685. DOI: 10.1080/10717544.2020.1853280.
    [55] ChenJ, HuangZ, ZhangH, et al. Three-dimensional layered nanofiber sponge with in situ grown silver- metal organic framework for enhancing wound healing[J]. Chem Eng J, 2022, 443:136234,2-11. DOI: https://doi.org/10.1016/j.cej.2022.136234.
  • 加载中
计量
  • 文章访问数:  280
  • HTML全文浏览量:  129
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 网络出版日期:  2024-01-23

目录

    /

    返回文章
    返回