[1] |
GaoY, SunW, ZhangY, et al. All-aqueous microfluidics fabrication of multifunctional bioactive microcapsules promotes wound healing [J]. ACS Appl Mater Interfaces, 2022, 14(43):48426-48437. DOI: 10.1021/acsami.2c13420.
|
[2] |
AdamiakK, SionkowskaA. Current methods of collagen cross-linking: review[J]. Int J Biol Macromol, 2020, 161:550-560. DOI: 10.1016/j.ijbiomac.2020.06.075.
|
[3] |
刘小刚,陈蕾,李海航,等. 天然与重组胶原蛋白在创面修复中的应用研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(10):978-982. DOI: 10.3760/cma.j.cn501120-20211123-00394.
|
[4] |
WangY, ZhangY, LiT, et al. Adipose mesenchymal stem cell derived exosomes promote keratinocytes and fibroblasts embedded in collagen/platelet-rich plasma scaffold and accelerate wound healing[J]. Adv Mater, 2023, 35(40):e2303642. DOI: 10.1002/adma.202303642.
|
[5] |
Davison-KotlerE, MarshallWS, García-GaretaE. Sources of collagen for biomaterials in skin wound healing[J]. Bioengineering (Basel), 2019, 6(3):56. DOI: 10.3390/bioengineering6030056.
|
[6] |
SolomonovI, ZehoraiE, Talmi-FrankD, et al. Distinct biological events generated by ECM proteolysis by two homologous collagenases[J]. Proc Natl Acad Sci U S A, 2016, 113(39):10884-10889. DOI: 10.1073/pnas.1519676113.
|
[7] |
YinH, LiuN, ZhouX, et al. The advance of CCN3 in fibrosis[J]. J Cell Commun Signal, 2023,17(4):1219-1227. DOI: 10.1007/s12079-023-00778-3.
|
[8] |
PiperigkouZ, GötteM, TheocharisAD, et al. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing[J]. Adv Drug Deliv Rev, 2018,129:16-36. DOI: 10.1016/j.addr.2017.10.008.
|
[9] |
MakuszewskaM, BondaT, CieślińskaM, et al. Expression of collagen type Ⅲ in healing tympanic membrane[J]. Int J Pediatr Otorhinolaryngol, 2020,136:110196. DOI: 10.1016/j.ijporl.2020.110196.
|
[10] |
WangC, BrissonBK, TerajimaM, et al. Type Ⅲ collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus[J]. Matrix Biol, 2020,85-86:47-67. DOI: 10.1016/j.matbio.2019.10.001.
|
[11] |
BacciS. Fine regulation during wound healing by mast cells, a physiological role not yet clarified[J]. Int J Mol Sci, 2022, 23(3):1820. DOI: 10.3390/ijms23031820.
|
[12] |
ShookB, XiaoE, KumamotoY, et al. CD301b+ macrophages are essential for effective skin wound healing[J]. J Invest Dermatol, 2016, 136(9):1885-1891. DOI: 10.1016/j.jid.2016.05.107.
|
[13] |
RodriguesM, KosaricN, BonhamCA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019,99(1):665-706. DOI: 10.1152/physrev.00067.2017.
|
[14] |
WilkinsonHN, HardmanMJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9):200223. DOI: 10.1098/rsob.200223.
|
[15] |
Mathew-SteinerSS, RoyS, SenCK. Collagen in wound healing[J]. Bioengineering (Basel), 2021,8(5):63.DOI: 10.3390/bioengineering8050063.
|
[16] |
LiR, LiuK, HuangX, et al. Bioactive materials promote wound healing through modulation of cell behaviors[J]. Adv Sci (Weinh), 2022,9(10):e2105152. DOI: 10.1002/advs.202105152.
|
[17] |
KislingA, LustRM, KatwaLC. What is the role of peptide fragments of collagen Ⅰ and Ⅳ in health and disease?[J]. Life Sci, 2019,228:30-34. DOI: 10.1016/j.lfs.2019.04.042.
|
[18] |
DariS, FadaiNT, O'DeaRD. Modelling the effect of matrix metalloproteinases in dermal wound healing[J]. Bull Math Biol, 2023, 85(10):96. DOI: 10.1007/s11538-023-01195-8.
|
[19] |
HuMS, MaanZN, WuJC, et al. Tissue engineering and regenerative repair in wound healing[J]. Ann Biomed Eng, 2014,42(7):1494-1507. DOI: 10.1007/s10439-014-1010-z.
|
[20] |
JiangX, WangY, FanD, et al. A novel human-like collagen hemostatic sponge with uniform morphology, good biodegradability and biocompatibility[J]. J Biomater Appl, 2017,31(8):1099-1107. DOI: 10.1177/0885328216687663.
|
[21] |
Mammadova-BachE, Gil-PulidoJ, SarukhanyanE, et al. Platelet glycoprotein Ⅵ promotes metastasis through interaction with cancer cell-derived galectin-3[J]. Blood, 2020, 135(14):1146-1160. DOI: 10.1182/blood.2019002649.
|
[22] |
SchwarzD, LipoldováM, ReineckeH, et al. Targeting inflammation with collagen[J]. Clin Transl Med, 2022,12(5):e831. DOI: 10.1002/ctm2.831.
|
[23] |
ZhangY, WangY, LiY, et al. Application of collagen-based hydrogel in skin wound healing[J]. Gels, 2023, 9(3):185. DOI: 10.3390/gels9030185.
|
[24] |
DasP, MannaS, RoyS, et al. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review[J/OL]. Burns Trauma, 2023,11:tkac058[2023-10-26]. https://pubmed.ncbi.nlm.nih.gov/36761088/. DOI: 10.1093/burnst/tkac058.
|
[25] |
DuCheyne C, TayH, De SpiegelaereW. The complex TIE between macrophages and angiogenesis[J]. Anat Histol Embryol, 2020, 49(5):585-596. DOI: 10.1111/ahe.12518.
|
[26] |
MarnerosAG, OlsenBR. The role of collagen-derived proteolytic fragments in angiogenesis[J]. Matrix Biol, 2001, 20(5/6):337-345. DOI: 10.1016/s0945-053x(01)00151-2.
|
[27] |
DarbyIA, LaverdetB, BontéF, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clin Cosmet Investig Dermatol, 2014,7:301-311. DOI: 10.2147/CCID.S50046.
|
[28] |
GeahchanS, BaharloueiP, RahmanA. Marine collagen: a promising biomaterial for wound healing, skin anti-aging, and bone regeneration[J]. Mar Drugs, 2022, 20(1):61. DOI: 10.3390/md20010061.
|
[29] |
BhartiS, MonikaV, AnandK, et al. Natural polymers used in the dressing materials for wound healing: past, present and future[J]. J Polym Sci, 2023, 1:1-26. DOI: 10.1002/pol.20220734.
|
[30] |
SalvatoreL, GalloN, AielloD, et al. An insight on type Ⅰ collagen from horse tendon for the manufacture of implantable devices[J]. Int J Biol Macromol, 2020, 154:291-306. DOI: 10.1016/j.ijbiomac.2020.03.082.
|
[31] |
PanggabeanJA, SbPAdiguna, HardhiyunaM, et al. Cutting edge aquatic-based collagens in tissue engineering[J]. Mar Drugs, 2023, 21(2):87. DOI: 10.3390/md21020087.
|
[32] |
SubhanF, HussainZ, TauseefI, et al. A review on recent advances and applications of fish collagen[J]. Crit Rev Food Sci Nutr, 2021,61(6):1027-1037. DOI: 10.1080/10408398.2020.1751585.
|
[33] |
LeeEH, ChunSY, LeeJN, et al. Optimized collagen extraction process to obtain high purity and large quantity of collagen from human perirenal adipose tissue[J]. Biomed Res Int, 2022, 1040/8398:1027-1037. DOI: 10.1080/10408398.2020.1751585.
|
[34] |
YouS, LiuS, DongX, et al. Intravaginal administration of human type Ⅲ collagen-derived biomaterial with high cell-adhesion activity to treat vaginal atrophy in rats[J]. ACS Biomater Sci Eng, 2020,6(4):1977-1988. DOI: 10.1021/acsbiomaterials.9b01649.
|
[35] |
HabibiS, MohammadiT, HMTShiraziR, et al. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: preparation, characterization, and controlled drug release[J]. Int J Biol Macromol, 2023,240:124399. DOI: 10.1016/j.ijbiomac.2023.124399.
|
[36] |
杨加敏,胥义,党航宇,等.组织器官脱细胞支架的制备及研究进展[J].生物工程学报, 2022, 38(6): 2169-2186. DOI: 10.13345/j.cjb.210772.
|
[37] |
ZhangQ, ChangC, QianC, et al. Photo-crosslinkable amniotic membrane hydrogel for skin defect healing[J]. Acta Biomater, 2021, 125:197-207. DOI: 10.1016/j.actbio.2021.02.043.
|
[38] |
ZhangQY, TanJ, NieR, et al. Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation[J]. Compos Part B-Eng, 2023, 2554:110550. DOI: 10.1016/j.compositesb.2023.110550.
|
[39] |
LiD, SunWQ, WangT, et al. Evaluation of a novel tilapia-skin acellular dermis matrix rationally processed for enhanced wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2021,127:112202. DOI: 10.1016/j.msec.2021.112202.
|
[40] |
YangC, ZhangY, ZhangX, et al. An injectable, self-healing, and antioxidant collagen- and hyaluronic acid-based hydrogel mediated with gallic acid and dopamine for wound repair[J]. Carbohydr Polym, 2023,320:121231. DOI: 10.1016/j.carbpol.2023.121231.
|
[41] |
ZhangM, DengF, TangL, et al. Super-ductile, injectable, fast self-healing collagen-based hydrogels with multi-responsive and accelerated wound-repair properties[J]. Chem Eng J, 2020, 405:126756. DOI: 10.1016/j.cej.2020.126756.
|
[42] |
BaltazarT, MerolaJ, CatarinoC, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells[J]. Tissue Eng Part A, 2020, 26(5/6):227-238. DOI: 10.1089/ten.TEA.2019.0201.
|
[43] |
GriffithsM, OjehN, LivingstoneR, et al. Survival of Apligraf in acute human wounds[J]. Tissue Eng, 2004,10(7/8):1180-1195. DOI: 10.1089/ten.2004.10.1180.
|
[44] |
ZhangZ, FengY, WangL, et al. A review of preparation methods of porous skin tissue engineering scaffolds[J]. Mater Today Commun, 2022, 32:104109. DOI: 10.1016/j.mtcomm.2022.104109.
|
[45] |
QiLH, MuLX, GuoXJ, et al. Fast expandable chitosan-fibers cryogel from ambient drying for noncompressible bleeding control and in situ tissue regeneration[J]. Adv Funct Mater, 2023, 33:2212231. DOI: 10.1002/adfm.202212231.
|
[46] |
LiuW, YangC, GaoR, et al. Polymer composite sponges with inherent antibacterial, hemostatic, inflammation-modulating and proregenerative performances for methicillin-resistant Staphylococcus aureus-infected wound healing[J]. Adv Healthc Mater, 2021,10(22):e2101247. DOI: 10.1002/adhm.202101247.
|
[47] |
ChenA, AnY, HuangW, et al. Highly water-preserving zwitterionic betaine-incorporated collagen sponges with anti-oxidation and anti-inflammation for wound regeneration[J]. Front Cell Dev Biol, 2020,8:491. DOI: 10.3389/fcell.2020.00491.
|
[48] |
KumarM, HillesAR, GeY, et al. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: their current status with regulatory perspective[J]. Int J Biol Macromol, 2023, 234:123696. DOI: 10.1016/j.ijbiomac.2023.123696.
|
[49] |
AntmenE, VranaNE, HasirciV. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures[J]. Biomater Sci, 2021, 9(24):8090-8110. DOI: 10.1039/d1bm00840d.
|
[50] |
HuC, ChuC, LiuL, et al. Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing[J]. Sci Adv, 2021, 7(22):eabf0787. DOI: 10.1126/sciadv.abf0787.
|
[51] |
ZouY, ZhouC, LiZ, et al. Hydrophobic tetracycline immobilized in fibrous hyaluronan regulates adhesive collagen-based hydrogel stability for infected wound healing[J]. Small, 2023,19(45):e2303414. DOI: 10.1002/smll.202303414.
|
[52] |
ChenY, YuanZ, SunW, et al. Vascular endothelial growth factor-recruiting nanofiber bandages promote multifunctional skin regeneration via improved angiogenesis and immunomodulation[J]. Adv Fiber Mater, 2022, 5:327-348. DOI: 10.1007/s42765-022-00226-8.
|
[53] |
AndonegiM, HerasKL, Santos-VizcaínoE, et al. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications[J]. Carbohydr Polym, 2020,237:116159. DOI: 10.1016/j.carbpol.2020.116159.
|
[54] |
LengQ, LiY, PangX, et al. Curcumin nanoparticles incorporated in PVA/collagen composite films promote wound healing[J]. Drug Deliv, 2020, 27(1):1676-1685. DOI: 10.1080/10717544.2020.1853280.
|
[55] |
ChenJ, HuangZ, ZhangH, et al. Three-dimensional layered nanofiber sponge with in situ grown silver- metal organic framework for enhancing wound healing[J]. Chem Eng J, 2022, 443:136234,2-11. DOI: https://doi.org/10.1016/j.cej.2022.136234.
|