留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载锌离子的复合水凝胶对糖尿病小鼠全层皮肤缺损感染创面的作用及机制

潘泽平 石云龙 袁志强 彭毅志 安中莲 乐率 龚雅利

潘泽平, 石云龙, 袁志强, 等. 负载锌离子的复合水凝胶对糖尿病小鼠全层皮肤缺损感染创面的作用及机制[J]. 中华烧伤与创面修复杂志, 2024, 40(9): 866-875. DOI: 10.3760/cma.j.cn501225-20231120-00200.
引用本文: 潘泽平, 石云龙, 袁志强, 等. 负载锌离子的复合水凝胶对糖尿病小鼠全层皮肤缺损感染创面的作用及机制[J]. 中华烧伤与创面修复杂志, 2024, 40(9): 866-875. DOI: 10.3760/cma.j.cn501225-20231120-00200.
Pan ZP,Shi YL,Yuan ZQ,et al.Effects and mechanisms of zinc ion-loaded composite hydrogel on infected full-thickness skin defect wounds in diabetic mice[J].Chin J Burns Wounds,2024,40(9):866-875.DOI: 10.3760/cma.j.cn501225-20231120-00200.
Citation: Pan ZP,Shi YL,Yuan ZQ,et al.Effects and mechanisms of zinc ion-loaded composite hydrogel on infected full-thickness skin defect wounds in diabetic mice[J].Chin J Burns Wounds,2024,40(9):866-875.DOI: 10.3760/cma.j.cn501225-20231120-00200.

负载锌离子的复合水凝胶对糖尿病小鼠全层皮肤缺损感染创面的作用及机制

doi: 10.3760/cma.j.cn501225-20231120-00200
基金项目: 

重庆英才项目 CQYC20220511656

详细信息
    通讯作者:

    乐率,Email:leshuai2004@qq.com

    龚雅利,Email:gongyali@tmmu.edu.cn

Effects and mechanisms of zinc ion-loaded composite hydrogel on infected full-thickness skin defect wounds in diabetic mice

Funds: 

Chongqing Talents Project CQYC20220511656

More Information
  • 摘要:   目的  探讨负载锌离子的复合水凝胶(以下简称含锌水凝胶)对糖尿病小鼠全层皮肤缺损感染创面的作用及其机制。  方法  该研究为实验研究。制备聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶(以下简称单纯水凝胶)和在单纯水凝胶的基础上添加锌离子的疏松多孔且具有良好黏附性的固态含锌水凝胶。计算用磷酸盐缓冲液(PBS)浸泡14 d后含锌水凝胶中锌离子的释放率。检测用单纯水凝胶、含锌水凝胶、PBS培养2 h后耐甲氧西林金黄色葡萄球菌(MRSA)浓度。利用酶标仪检测单纯水凝胶、含锌水凝胶、PBS对1,1-二苯基-2-三硝基苯肼(DPPH)的清除率,反映清除氧自由基能力。测量用单纯水凝胶、含锌水凝胶、PBS培养24 h后人脐静脉内皮细胞(HUVEC)形成的血管长度。采用细胞计数试剂盒8检测用单纯水凝胶、含锌水凝胶、PBS培养24 h后L929细胞的活力。将小鼠红细胞悬液分为用PBS处理的空白对照组和用相应溶液处理的单纯水凝胶组、含锌水凝胶组和Triton X-100组,利用酶标仪检测孵育2 h后红细胞的溶血情况并计算溶血率。以上实验样本数均为3。取21只6~8周龄雄性C57BL/6J小鼠,在背部脊柱对称位置各制备1个用MRSA感染的全层皮肤缺损创面。将小鼠分为滴加PBS的空白对照组和用相应水凝胶处理的单纯水凝胶组和含锌水凝胶组。伤后3 d,检测空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面中的细菌浓度,样本数为4。于伤后0(即刻)、3、7、14 d,大体观察小鼠创面感染情况并计算伤后3、7、14 d创面愈合率,样本数为5。伤后14 d,行苏木精-伊红染色和Masson染色分别检测小鼠创面中的新生上皮和胶原生成情况,行免疫荧光染色检测小鼠创面中血管新生及M2型巨噬细胞分布情况。  结果  浸泡14 d后,含锌水凝胶中锌离子的释放率为(70.5±4.6)%。与用含锌水凝胶比较,用PBS和单纯水凝胶培养2 h后细菌浓度均明显升高(P<0.05)。含锌水凝胶对DPPH的清除率明显高于PBS、单纯水凝胶(P值均<0.05)。与用PBS比较,用含锌水凝胶培养24 h后HUVEC形成的血管长度明显增长(P<0.05)。与用含锌水凝胶比较,用PBS和单纯水凝胶培养24 h后L929细胞的活力均明显降低(P<0.05)。孵育2 h后,与Triton X-100组相比,空白对照组、单纯水凝胶组、含锌水凝胶组红细胞的溶血率均显著降低(P<0.05);而后3组的红细胞溶血率相近(P>0.05)。伤后3 d,含锌水凝胶组小鼠创面中的细菌浓度明显低于空白对照组和单纯水凝胶组(P值均<0.05)。伤后3~14 d,3组小鼠创面均逐渐愈合,含锌水凝胶组小鼠伤后14 d创面基本愈合。伤后7 d,含锌水凝胶组小鼠创面愈合率为(72.4±8.4)%,明显高于空白对照组和单纯水凝胶组的(31.6±6.7)%、(44.7±5.4)%(P值均<0.05)。伤后14 d,含锌水凝胶组小鼠创面愈合率为(92.7±4.3)%,明显高于空白对照组的(73.5±7.4)%,P<0.05。伤后14 d,与空白对照组和单纯水凝胶组相比,含锌水凝胶组小鼠创面的新生表皮长度更长、厚度更厚,胶原沉积更多,新生血管和M2型巨噬细胞分布更丰富。  结论  含锌水凝胶具有良好的生物相容性、清除氧自由基能力和体内外抗菌效果、促血管生成能力,可持续缓释锌离子,促进创面再上皮化及胶原合成,从而促进小鼠全层皮肤缺损感染创面愈合。

     

  • 参考文献(32)

    [1] JiangY, ZhuJ, LaiX. Development and validation of a risk prediction model for ketosis-prone type 2 diabetes mellitus among patients newly diagnosed with type 2 diabetes mellitus in China[J]. Diabetes Metab Syndr Obes, 2023,16:2491-2502. DOI: 10.2147/DMSO.S424267.
    [2] YangN, MasingboonK, SamartkitN. Factors influencing diabetes self-management among adults with type 2 diabetes mellitus in China[J]. Belitung Nurs J, 2022,8(5):389-395. DOI: 10.33546/bnj.2199.
    [3] YaoX, LuF, WangZ, et al. Association of sleep behaviors, insulin resistance surrogates, and the risk of hypertension in Chinese adults with type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne), 2023,14:1212878. DOI: 10.3389/fendo.2023.1212878.
    [4] QinL, MaQ, ZhangC, et al. Genetic polymorphism of lipoprotein-associated phospholipase a2 influences susceptibility to gestational diabetes mellitus in Chinese population[J]. Diabetes Metab Syndr Obes, 2023,16:3285-3294. DOI: 10.2147/DMSO.S430352.
    [5] MaM, MaX, ChangJ, et al. The psychometric properties of the barriers to insulin treatment questionnaire in Chinese patients with type 2 diabetes mellitus using insulin[J]. Front Endocrinol (Lausanne), 2023,14:1192108. DOI: 10.3389/fendo.2023.1192108.
    [6] YeJ, WuY, YangS, et al. The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: a systematic analysis of the Global Burden of Disease Study 2019[J]. Front Endocrinol (Lausanne), 2023,14:1192629. DOI: 10.3389/fendo.2023.1192629.
    [7] PengB, MinR. Development of predictive nomograms clinical use to quantify the risk of diabetic foot in patients with type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne), 2023,14:1186992. DOI: 10.3389/fendo.2023.1186992.
    [8] LorestanifarM, Mosayebi MolasaraeiM, JashaninejadR, et al. The prevalence of uncontrolled diabetes mellitus in patients with type 2 diabetes: a multicenter cross-sectional study[J]. J Diabetes Metab Disord, 2023,22(1):787-792. DOI: 10.1007/s40200-023-01201-9.
    [9] FangZ, LinT, FanS, et al. Antibacterial, injectable, and adhesive hydrogel promotes skin healing[J]. Front Bioeng Biotechnol, 2023,11:1180073. DOI: 10.3389/fbioe.2023.1180073.
    [10] ShenJ, JiaoW, ChenZ, et al. Injectable multifunctional chitosan/dextran-based hydrogel accelerates wound healing in combined radiation and burn injury[J]. Carbohydr Polym, 2023,316:121024. DOI: 10.1016/j.carbpol.2023.121024.
    [11] YangY, MaY, WangJ, et al. Chitosan-based mussel-inspired hydrogel for rapid self-healing and high adhesion of tissue adhesion and wound dressings[J]. Carbohydr Polym, 2023,316:121083. DOI: 10.1016/j.carbpol.2023.121083.
    [12] ZhangT, GuoY, ChenY, et al. A multifunctional and sustainable poly(ionic liquid)-quaternized chitosan hydrogel with thermal-triggered reversible adhesion[J]. Int J Biol Macromol, 2023,242(Pt 4):125198. DOI: 10.1016/j.ijbiomac.2023.125198.
    [13] HanZ, DengL, ChenS, et al. Zn2+-Loaded adhesive bacterial cellulose hydrogel with angiogenic and antibacterial abilities for accelerating wound healing[J/OL]. Burns Trauma, 2023,11:tkac048[2023-11-20]. https://pubmed.ncbi.nlm.nih.gov/36751362/. DOI: 10.1093/burnst/tkac048.
    [14] ChenL, GuoY, ChenL, et al. Injectable Zn2+ and paeoniflorin release hydrogel for promoting wound healing[J]. ACS Appl Bio Mater, 2023,6(6):2184-2195. DOI: 10.1021/acsabm.3c00059.
    [15] LiangZ, LuoJ, LiuS, et al. Injectable, antibacterial, ROS scavenging and pro-angiogenic hydrogel adhesives promote chronic wound healing in diabetes via synergistic release of NMN and Mg2+[J]. Chem Eng J, 2023, 475:146092.
    [16] ShearierER, BowenPK, HeW, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc[J]. ACS Biomater Sci Eng, 2016,2(4):634-642. DOI: 10.1021/acsbiomaterials.6b00035.
    [17] BaiL, ZhangX, LiX, et al. Impact of a novel hydrogel with injectable platelet-rich fibrin in diabetic wound healing[J]. J Diabetes Res, 2023,2023:7532637. DOI: 10.1155/2023/7532637.
    [18] ShangM, JiangH, LiJ, et al. A dual physical crosslinking starch-based hydrogel exhibiting high strength, fatigue resistance, excellent biocompatibility, and biodegradability[J]. Food Chem X, 2023,18:100728. DOI: 10.1016/j.fochx.2023.100728.
    [19] ZhengZ, YangX, FangM, et al. Photothermal effective CeO2NPs combined in thermosensitive hydrogels with enhanced antibacterial, antioxidant and vascularization performance to accelerate infected diabetic wound healing[J]. Regen Biomater, 2023,10:rbad072. DOI: 10.1093/rb/rbad072.
    [20] FengY, QinS, LiH, et al. Composite hydrogel dressings with enhanced mechanical properties and anti-inflammatory ability for effectively promoting wound repair[J]. Int J Nanomedicine, 2023,18:5183-5195. DOI: 10.2147/IJN.S411478.
    [21] YangY, LiB, WangM, et al. Effect of natural polymer materials on skin healing based on internal wound microenvironment: a review[J]. Front Chem, 2023,11:1257915. DOI: 10.3389/fchem.2023.1257915.
    [22] LiuY, ZhangM, LiaoY, et al. Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing[J]. Front Immunol, 2023,14:1142088. DOI: 10.3389/fimmu.2023.1142088.
    [23] WangJ, HanY, HuangF, et al. Diabetic macrophage small extracellular vesicles-associated miR-503/IGF1R axis regulates endothelial cell function and affects wound healing[J]. Front Immunol, 2023,14:1104890. DOI: 10.3389/fimmu.2023.1104890.
    [24] ShengW, QinH, WangT, et al. Advanced phosphocreatine-grafted chitosan hydrogel promote wound healing by macrophage modulation[J]. Front Bioeng Biotechnol, 2023,11:1199939. DOI: 10.3389/fbioe.2023.1199939.
    [25] AccipeL, AbadieA, NeviereR, et al. Antioxidant activities of natural compounds from caribbean plants to enhance diabetic wound healing[J]. Antioxidants (Basel), 2023, 12(5):1079. DOI: 10.3390/antiox12051079.
    [26] YeJ, LiQ, ZhangY, et al. ROS scavenging and immunoregulative EGCG@Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing[J]. Acta Biomater, 2023,166:155-166. DOI: 10.1016/j.actbio.2023.05.027.
    [27] ZhangJ, LiL, YuJ, et al. Autophagy-modulated biomaterial: a robust weapon for modulating the wound environment to promote skin wound healing[J]. Int J Nanomedicine, 2023,18:2567-2588. DOI: 10.2147/IJN.S398107.
    [28] XiaoH, ChenX, ShanJ, et al. A spatiotemporal release hydrogel based on an M1-to-M2 immunoenvironment for wound management[J]. J Mater Chem B, 2023, 11(18):3994-4004. DOI: 10.1039/d3tb00463e.
    [29] GengK, MaX, JiangZ, et al. High glucose-induced STING activation inhibits diabetic wound healing through promoting M1 polarization of macrophages[J]. Cell Death Discov, 2023,9(1):136. DOI: 10.1038/s41420-023-01425-x.
    [30] XiaW, LiuY, JiangX, et al. Lean adipose tissue macrophage derived exosome confers immunoregulation to improve wound healing in diabetes[J]. J Nanobiotechnology, 2023,21(1):128. DOI: 10.1186/s12951-023-01869-4.
    [31] 谢军,毛玉洁,王思宇,等. 紫草素对大鼠慢性皮肤溃疡创面愈合及新生血管形成的促进作用及其机制[J]. 解放军医学杂志,2022,47(1):39-45. DOI: 10.11855/j.issn.0577-7402.2022.01.0039.
    [32] 毛蓓茜,倪鹏文,李挺,等. 慢性创面患者自我感受负担的现况及影响因素研究[J]. 组织工程与重建外科杂志,2022,18(2):118-122,153. DOI: 10.3969/j.issn.1673-0364.2022.02.007.
  • 图  1  含锌水凝胶的表征及微观结构。1A.成胶前呈流动状态;1B.成胶后呈暗红色,倒立时可保持稳定不流动;1C.水凝胶可牢固黏附在手指上;1D.水凝胶呈多孔结构 扫描电子显微镜×500

    注:含锌水凝胶指负载锌离子的聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶

    图  2  3组糖尿病小鼠伤后各时间点全层皮肤缺损感染创面的愈合情况。2A、2B、2C、2D.分别为空白对照组伤后0(即刻)、3、7、14 d创面情况;2E、2F、2G、2H.分别为单纯水凝胶组伤后0、3、7、14 d创面情况;2I、2J、2K、2L.分别为含锌水凝胶组伤后0、3、7、14 d创面情况,图2B、2F、2J的创面均被感染且情况相似,图2K剩余创面面积明显小于图2C、2G,图2L的创面基本愈合且剩余创面面积明显小于图2D、2H

    注:空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面感染耐甲氧西林金黄色葡萄球菌后分别用磷酸盐缓冲液、聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶、负载锌离子的聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶处理;每张分图底部为刻度尺刻度

    图  3  3组糖尿病小鼠伤后14 d全层皮肤缺损感染创面组织学分析。3A、3B、3C.分别为空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面,图3C中的新生上皮较3A、3B更加完整 苏木精-伊红×100;3D、3E、3F.分别为空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面,图3F胶原沉积(蓝色区域)较图3D和图3E明显增多 Masson×100

    注:空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面感染耐甲氧西林金黄色葡萄球菌后分别用磷酸盐缓冲液、聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶、负载锌离子的聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶处理

    图  4  3组糖尿病小鼠伤后14 d全层皮肤缺损感染创面中新生血管及M2型巨噬细胞分布情况 Alexa Fluor 594-4',6-二脒基-2-苯基吲哚×200。4A、4B、4C.分别为空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面,图4C中的新生血管明显较图4A、4B多;4D、4E、4F.分别为空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面,图4F中的M2型巨噬细胞明显较图4D、4E多

    注:空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面感染耐甲氧西林金黄色葡萄球菌后分别用磷酸盐缓冲液、聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶、负载锌离子的聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶处理;CD31和CD206(分别表示新生血管和M2型巨噬细胞)阳性染色为红色,细胞核阳性染色为蓝色

    Table  1.   3组糖尿病小鼠伤后各时间点全层皮肤缺损感染创面的愈合率比较(%,x¯±s

    组别样本数3 d7 d14 d
    空白对照组58.8±2.931.6±6.7a73.5±7.4a
    单纯水凝胶组58.2±2.044.7±5.4a85.4±5.7
    含锌水凝胶组58.7±1.372.4±8.492.7±4.3
    F0.11168.0013.28
    P0.900<0.001<0.001
    注:空白对照组、单纯水凝胶组、含锌水凝胶组小鼠创面感染耐甲氧西林金黄色葡萄球菌后分别用磷酸盐缓冲液、聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶、负载锌离子的聚(甘油癸二酸酯)-共-聚乙二醇-共聚-邻苯二酚/季铵化壳聚糖水凝胶处理;处理因素主效应,F=39.35,P<0.001;时间因素主效应,F=856.67,P<0.001;二者交互作用,F=22.64,P<0.001;与含锌水凝胶组相比,aP<0.05
    下载: 导出CSV
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  20
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20

目录

    /

    返回文章
    返回