留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增生性瘢痕动物模型的研究进展

刘佳琦 韩宜格 李学拥 马显杰

刘佳琦, 韩宜格, 李学拥, 等. 增生性瘢痕动物模型的研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(11): 1095-1100. DOI: 10.3760/cma.j.cn501225-20231127-00208.
引用本文: 刘佳琦, 韩宜格, 李学拥, 等. 增生性瘢痕动物模型的研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(11): 1095-1100. DOI: 10.3760/cma.j.cn501225-20231127-00208.
Liu JQ,Han YG,Li XY,et al.Research advances on animal models of hypertrophic scar[J].Chin J Burns Wounds,2024,40(11):1095-1100.DOI: 10.3760/cma.j.cn501225-20231127-00208.
Citation: Liu JQ,Han YG,Li XY,et al.Research advances on animal models of hypertrophic scar[J].Chin J Burns Wounds,2024,40(11):1095-1100.DOI: 10.3760/cma.j.cn501225-20231127-00208.

增生性瘢痕动物模型的研究进展

doi: 10.3760/cma.j.cn501225-20231127-00208
详细信息
    通讯作者:

    李学拥,Email:yuyong@fmmu.edu.cn

    马显杰,Email:majing@fmmu.edu.cn

Research advances on animal models of hypertrophic scar

More Information
  • 摘要: 理想的增生性瘢痕动物模型对研究增生性瘢痕发病机制和开发更有效的治疗方法至关重要。研究者们已尝试在多种动物身上建立增生性瘢痕模型,兔耳增生性瘢痕模型是其中应用最广的一种。而近年新提出的大鼠鼠尾增生性瘢痕模型和乙醇诱导的兔耳增生性瘢痕模型等在继承传统模型优点的基础上又简化了模型制造方法,具有较大研究潜力。该文简要综述裸鼠、小鼠、大鼠、兔、猪、豚鼠及犬等增生性瘢痕动物模型的研究进展,为研究者选择合适的模型、改进现有的动物模型及开发新的动物模型提供思路。

     

  • 参考文献(39)

    [1] LimandjajaGC,NiessenFB, ScheperRJ, et al. Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars[J]. Exp Dermatol, 2021,30(1):146-161. DOI: 10.1111/exd.14121.
    [2] IshackS, LipnerSR. A review of 3-dimensional skin bioprinting techniques: applications, approaches, and trends[J]. Dermatol Surg, 2020,46(12):1500-1505. DOI: 10.1097/DSS.0000000000002378.
    [3] ShetlarMR, ShetlarCL, HendricksL, et al. The use of athymic nude mice for the study of human keloids[J].Proc Soc Exp Biol Med,1985,179(4):549-552.DOI: 10.3181/00379727-179-rc3.
    [4] KischerCW, PindurJ, ShetlarMR, et al. Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology[J].J Trauma,1989,29(5):672-677. DOI: 10.1097/00005373-198905000-00023.
    [5] LiSY, YangJX, SunJC, et al. Adipose-derived mesenchymal stem cells alleviate hypertrophic scar by inhibiting bioactivity and inducing apoptosis in hypertrophic scar fibroblasts[J]. Cells,2022,11(24):4024. DOI: 10.3390/cells11244024.
    [6] RobbEC,WaymackJP,WardenGD, et al. A new model for studying the development of human hypertrophic burn scar formation[J]. J Burn Care Rehabil,1987,8(5):371-375. DOI: 10.1097/00004630-198709000-00006.
    [7] YangDY,LiSR,WuJL,et al. Establishment of a hypertrophic scar model by transplanting full-thickness human skin grafts onto the backs of nude mice[J]. Plast Reconstr Surg,2007,119(1):104-109. DOI: 10.1097/01.prs.0000244828.80490.62.
    [8] MomtaziM, KwanP, DingJ,et al. A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar[J]. Wound Repair Regen,2013,21(1):77-87. DOI: 10.1111/j.1524-475X.2012.00856.x.
    [9] AarabiS, BhattKA, ShiY,et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J]. FASEB J,2007,21(12):3250-3261.DOI: 10.1096/fj.07-8218com.
    [10] DavidsonJM, YuF, OpalenikSR. Splinting strategies to overcome confounding wound contraction in experimental animal models[J]. Adv Wound Care (New Rochelle), 2013,2(4):142-148. DOI: 10.1089/wound.2012.0424.
    [11] JimiS, SaparovA, KoizumiS, et al. A novel mouse wound model for scar tissue formation in abdominal muscle wall[J]. J Vet Med Sci,2021,83(12):1933-1942. DOI: 10.1292/jvms.21-0464.
    [12] IbrahimMM, BondJ, BergeronA, et al. A novel immune competent murine hypertrophic scar contracture model: a tool to elucidate disease mechanism and develop new therapies[J]. Wound Repair Regen,2014,22(6):755-764.DOI: 10.1111/wrr.12238.
    [13] CameronAM, AdamsDH, GreenwoodJE, et al. A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J]. Plast Reconstr Surg,2014,133(1):69-78.DOI: 10.1097/01.prs.0000436821.26709.a7.
    [14] XuC, ZhangH, YangC,et al. miR-125b-5p delivered by adipose-derived stem cell exosomes alleviates hypertrophic scarring by suppressing Smad2[J/OL]. Burns Trauma,2024,12:tkad064[2024-10-24].https://pubmed.ncbi.nlm.nih.gov/38765787/.DOI: 10.1093/burnst/tkad064.
    [15] YuanR, DaiX, LiY, et al. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling[J]. Mol Med Rep,2021,24(5):758. DOI: 10.3892/mmr.2021.12398.
    [16] GolbergA, VilligerM, KhanS, et al. Preventing scars after injury with partial irreversible electroporation[J]. J Invest Dermatol,2016,136(11):2297-2304.DOI: 10.1016/j.jid.2016.06.620.
    [17] KimM, KimSW, KimH, et al. Development of a reproducible in vivo laser-induced scar model for wound healing study and management[J]. Biomed Opt Express,2019,10(4):1965-1977. DOI: 10.1364/BOE.10.001965.
    [18] SonDO, HinzB. A rodent model of hypertrophic scarring: splinting of rat wounds[J]. Methods Mol Biol, 2021,2299:405-417. DOI: 10.1007/978-1-0716-1382-5_27.
    [19] MarchesiniA, De FrancescoF, Mattioli-BelmonteM, et al. A new animal model for pathological subcutaneous fibrosis: surgical technique and in vitro analysis[J]. Front Cell Dev Biol,2020,8:542. DOI: 10.3389/fcell.2020.00542.
    [20] ZhouS, WangW, ZhouS, et al. A novel model for cutaneous wound healing and scarring in the rat[J]. Plast Reconstr Surg,2019,143(2):468-477.DOI: 10.1097/PRS.0000000000005274.
    [21] HeJ, FangB, ShanS, et al. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1[J]. Cell Death Dis, 2021,12(3):226. DOI: 10.1038/s41419-021-03481-6.
    [22] MorrisDE, WuL, ZhaoLL, et al. Acute and chronic animal models for excessive dermal scarring: quantitative studies[J]. Plast Reconstr Surg, 1997,100(3):674-681. DOI: 10.1097/00006534-199709000-00021.
    [23] 朱桂英,徐斌,蔡景龙.兔耳解剖特点与成功建立增生性瘢痕模型的相关性实验研究[J].中华整形外科杂志,2008,24(3): 216-219. DOI: 10.3760/j.issn:1009-4598.2008.03.014.
    [24] LeeAR. Enhancing dermal matrix regeneration and biomechanical properties of 2nd degree-burn wounds by EGF-impregnated collagen sponge dressing[J]. Arch Pharm Res,2005,28(11):1311-1316. DOI: 10.1007/BF02978217.
    [25] ZuW, JiangB, LiuH. Establishment of a long-term hypertrophic scar model by injection of anhydrous alcohol: a rabbit model[J]. Int J Exp Pathol,2021,102(2):105-112. DOI: 10.1111/iep.12389.
    [26] RösslerS, NischwitzSP, LuzeH,et al. In vivo models for hypertrophic scars-a systematic review[J]. Medicina (Kaunas),2022,58(6):736.DOI: 10.3390/medicina58060736.
    [27] HuangJ, ChenJ, WoY, et al. CO2 fractional laser combined with 5-fluorouracil ethosomal gel treatment of hypertrophic scar macro-, microscopic, and molecular mechanism of action in a rabbit animal model[J]. Rejuvenation Res,2021,24(2):131-138. DOI: 10.1089/rej.2019.2204.
    [28] ChenHY, LeiY, OuYangHW, et al. Experimental comparative study of the effect of fractional CO2 laser combined with pulsed dye laser versus each laser alone on the treatment of hypertrophic scar of rabbit ears[J]. J Cosmet Dermatol,2022,21(3):979-990. DOI: 10.1111/jocd.14732.
    [29] ZengJ, HuangTY, WangZZ, et al. Scar-reducing effects of gambogenic acid on skin wounds in rabbit ears[J]. Int Immunopharmacol,2021,90:107200.DOI: 10.1016/j.intimp.2020.107200.
    [30] MengX, YuZ, XuW, et al. Control of fibrosis and hypertrophic scar formation via glycolysis regulation with IR780[J/OL]. Burns Trauma,2022,10:tkac015[2023-11-27].https://pubmed.ncbi.nlm.nih.gov/35769829/.DOI: 10.1093/burnst/tkac015.
    [31] MonyMP, HarmonKA, HessR, et al. An updated review of hypertrophic scarring[J]. Cells,2023,12(5):678. DOI: 10.3390/cells12050678.
    [32] RodriguesAE, DolivoD, LiY, et al. Comparison of thermal burn-induced and excisional-induced scarring in animal models: a review of the literature[J]. Adv Wound Care (New Rochelle),2022,11(3):150-162. DOI: 10.1089/wound.2021.0035.
    [33] SummerfieldA, MeurensF, RicklinME. The immunology of the porcine skin and its value as a model for human skin[J]. Mol Immunol,2015,66(1):14-21.DOI: 10.1016/j.molimm.2014.10.023.
    [34] ZhuKQ, EngravLH, GibranNS, et al. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin[J]. Burns,2003,29(7):649-664. DOI: 10.1016/s0305-4179(03)00205-5.
    [35] CuttleL, KempfM, PhillipsGE, et al. A porcine deep dermal partial thickness burn model with hypertrophic scarring[J].Burns,2006,32(7):806-820.DOI: 10.1016/j.burns.2006.02.023.
    [36] NischwitzSP, FinkJ, SchellneggerM, et al. The role of local inflammation and hypoxia in the formation of hypertrophic scars-a new model in the duroc pig[J]. Int J Mol Sci,2022,24(1):316. DOI: 10.3390/ijms24010316.
    [37] Holzer-GeisslerJCJ, SchwingenschuhS, ZachariasM, et al. The impact of prolonged inflammation on wound healing[J]. Biomedicines,2022,10(4):856.DOI: 10.3390/biomedicines10040856.
    [38] AksoyMH, VargelI, CanterIH,et al. A new experimental hypertrophic scar model in guinea pigs[J]. Aesthetic Plast Surg,2002,26(5):388-396.DOI: 10.1007/s00266-002-1121-z.
    [39] KimuraT. Hairless descendants of Mexican hairless dogs: an experimental model for studying hypertrophic scars[J]. J Cutan Med Surg,2011,15(6):329-339.DOI: 10.2310/7750.2011.10081.
  • 加载中
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 网络出版日期:  2024-11-19

目录

    /

    返回文章
    返回