留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先进生物材料在创面修复中的应用

罗高兴 周璇

罗高兴, 周璇. 先进生物材料在创面修复中的应用[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 26-32. DOI: 10.3760/cma.j.cn501225-20231128-00211.
引用本文: 罗高兴, 周璇. 先进生物材料在创面修复中的应用[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 26-32. DOI: 10.3760/cma.j.cn501225-20231128-00211.
Luo GX,Zhou X.Application of advanced biomaterials in wound repair[J].Chin J Burns Wounds,2024,40(1):26-32.DOI: 10.3760/cma.j.cn501225-20231128-00211.
Citation: Luo GX,Zhou X.Application of advanced biomaterials in wound repair[J].Chin J Burns Wounds,2024,40(1):26-32.DOI: 10.3760/cma.j.cn501225-20231128-00211.

先进生物材料在创面修复中的应用

doi: 10.3760/cma.j.cn501225-20231128-00211
基金项目: 

国家重点研发计划项目 2021YFA1101100

详细信息
    通讯作者:

    罗高兴,Email:logxw@hotmail.com

Application of advanced biomaterials in wound repair

Funds: 

National Key Research and Development Program of China 2021YFA1101100

More Information
  • 摘要: 皮肤创面愈合是一个极其复杂的病理生理过程。随着材料科学、组织工程学等快速发展,通过多学科融合研发的先进生物材料具有更多功能与作用,为加快创面修复速度、改善创面修复质量,甚至组织再生提供了新的思路、策略与方法。该文重点阐述了不同种类的多功能先进生物材料在促进创面修复中的应用。

     

  • 参考文献(43)

    [1] ErikssonE,LiuPY,SchultzGS,et al.Chronic wounds: treatment consensus[J].Wound Repair Regen,2022,30(2):156-171.DOI: 10.1111/wrr.12994.
    [2] LiH,LiB,LvD,et al.Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment[J].Adv Drug Deliv Rev,2023,196:114778.DOI: 10.1016/j.addr.2023.114778.
    [3] 姚泽欣,付小兵,程飚.慢性创面愈合新理念:姑息性创面治疗的研究进展[J].中华烧伤杂志,2020,36(8):754-757.DOI: 10.3760/cma.j.cn501120-20190929-00388.
    [4] YangY,LiangY,ChenJ,et al.Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing[J].Bioact Mater,2021,8:341-354.DOI: 10.1016/j.bioactmat.2021.06.014.
    [5] HuangC,DongL,ZhaoB,et al.Tunable sulfated alginate-based hydrogel platform with enhanced anti-inflammatory and antioxidant capacity for promoting burn wound repair[J].J Nanobiotechnology,2023,21(1):387.DOI: 10.1186/s12951-023-02144-2.
    [6] YuD,CuiS,ChenL,et al.Marine-derived bioactive peptides self-assembled multifunctional materials: antioxidant and wound healing[J].Antioxidants (Basel),2023,12(6):1190.DOI: 10.3390/antiox12061190.
    [7] HickmanDA,PawlowskiCL,SekhonUDS,et al.Biomaterials and advanced technologies for hemostatic management of bleeding[J].Adv Mater,2018,30(4):1700859.DOI: 10.1002/adma.201700859.
    [8] HuangY,FanC,LiuY,et al.Nature-derived okra gel as strong hemostatic bioadhesive in human blood, liver, and heart trauma of rabbits and dogs[J].Adv Healthc Mater,2022,11(18):e2200939.DOI: 10.1002/adhm.202200939.
    [9] XuK,LiuY,BuS,et al.Egg albumen as a fast and strong medical adhesive glue[J].Adv Healthc Mater,2017,6(19):1700132.DOI: 10.1002/adhm.201700132.
    [10] GuoY,WangY,ZhaoX,et al.Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light[J].Sci Adv,2021,7(29):eabf9635.DOI: 10.1126/sciadv.abf9635.
    [11] 彭代智.烧伤后炎症反应的病因、分子机制及防治对策[J].中华烧伤杂志,2005,21(6):405-409.DOI: 10.3760/cma.j.issn.1009-2587.2005.06.002.
    [12] LiuT,XiaoB,XiangF,et al.Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases[J].Nat Commun,2020,11(1):2788.DOI: 10.1038/s41467-020-16544-7.
    [13] PengY,HeD,GeX,et al.Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition[J].Bioact Mater,2021,6(10):3109-3124.DOI: 10.1016/j.bioactmat.2021.02.006.
    [14] TuC,LuH,ZhouT,et al.Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J].Biomaterials,2022,286:121597.DOI: 10.1016/j.biomaterials.2022.121597.
    [15] GeX,HuJ,PengY,et al.Atmosphere-inspired multilayered nanoarmor with modulable protection and delivery of interleukin-4 for inflammatory microenvironment modulation[J].Biomaterials,2023,301:122254.DOI: 10.1016/j.biomaterials.2023.122254.
    [16] 严珍珍, 王雨翔, 张停琳, 等. 负载银纳米颗粒小球藻的明胶/聚乙二醇水凝胶的性能及其对小鼠全层皮肤缺损感染创面愈合的作用[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 33-42. DOI: 10.3760/cma.j.cn501225-20231020-00126.
    [17] LiuM,HeD,YangT,et al.An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy[J].J Nanobiotechnology,2018,16(1):23.DOI: 10.1186/s12951-018-0348-z.
    [18] HeDF, YangT, QianW,et al.Combined photothermal and antibiotic therapy for bacterial infection via acidity-sensitive nanocarriers with enhanced antimicrobial performance[J].Appl Mater Today,2018,12:415-429.DOI: 10.1016/j.apmt.2018.07.006.
    [19] WuM,ZhangZ,LiuZ,et al.Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing[J].Nano Today,2021,37:101104.DOI: 10.1016/j.nantod.2021.101104.
    [20] LiuT,LiuY,LiuM,et al.Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing[J/OL].Burns Trauma,2018,6:16[2023-11-28].https://pubmed.ncbi.nlm.nih.gov/29796394/.DOI: 10.1186/s41038-018-0115-2.
    [21] 程飚,付小兵.微环境控制是实现创面完美修复的必由之路[J].中华烧伤杂志,2020,36(11):1003-1008.DOI: 10.3760/cma.j.cn501120-20201009-00429.
    [22] BrummelkampWH,BoeremaI,HoogendykL.Treatment of clostridial infections with hyperbaric oxygen drenching. A report on 26 cases[J].Lancet,1963,1(7275):235-238.DOI: 10.1016/s0140-6736(63)90950-4.
    [23] WinterGD.Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig[J].Nature,1962,193(4812): 293-294.DOI: 10.1038/193293a0.
    [24] MesterE,NagylucskayS,DöklenA,et al.Laser stimulation of wound healing[J].Acta Chir Acad Sci Hung,1976,17(1):49-55.
    [25] XuR,LuoG,XiaH,et al.Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction[J].Biomaterials,2015,40:1-11.DOI: 10.1016/j.biomaterials.2014.10.077.
    [26] 刘颖, 程凤, 王泽薇, 等. 负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶的制备及其对大鼠全层皮肤缺损创面愈合的作用[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 50-56. DOI: 10.3760/cma.j.cn501225-20230928-00101.
    [27] KongY,XuR,DarabiMA,et al.Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing[J].Int J Nanomedicine,2016,11:2543-2555.DOI: 10.2147/IJN.S102861.
    [28] LuY, LiH, WangJ, et al. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing[J]. Adv Funct Mater, 2021,31(48):2105749. DOI: 10.1002/adfm.202105749.
    [29] WangM,WangC,ChenM,et al.Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release[J].ACS Nano,2019,13(9):10279-10293.DOI: 10.1021/acsnano.9b03656.
    [30] ShiekhPA,SinghA,KumarA.Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing[J].Biomaterials,2020,249:120020.DOI: 10.1016/j.biomaterials.2020.120020.
    [31] WangY,XuR,HeW,et al.Three-dimensional histological structures of the human dermis[J].Tissue Eng Part C Methods,2015,21(9):932-944.DOI: 10.1089/ten.TEC.2014.0578.
    [32] WangY,XuR,LuoG,et al.Biomimetic fibroblast-loaded artificial dermis with "sandwich" structure and designed gradient pore sizes promotes wound healing by favoring granulation tissue formation and wound re-epithelialization[J].Acta Biomater,2016,30:246-257.DOI: 10.1016/j.actbio.2015.11.035.
    [33] AfewerkiS,SheikhiA,KannanS,et al.Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: towards natural therapeutics[J].Bioeng Transl Med,2018,4(1):96-115.DOI: 10.1002/btm2.10124.
    [34] DarabiMA,KhosrozadehA,MbeleckR,et al.Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability[J].Adv Mater,2017,29(31):1700533.DOI: 10.1002/adma.201700533.
    [35] XuY,PengJ,DongX,et al.Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration[J].Acta Biomater,2017,55:249-261.DOI: 10.1016/j.actbio.2017.03.056.
    [36] 刘清华, 李曌, 恩和吉日嘎拉, 等. 三维生物打印支架的拓扑结构介导的免疫反应对小鼠毛囊周期的影响[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 43-49. DOI: 10.3760/cma.j.cn501225-20231020-00125.
    [37] ChangP,LiS,SunQ,et al.Large full-thickness wounded skin regeneration using 3D-printed elastic scaffold with minimal functional unit of skin[J].J Tissue Eng,2022,13:20417314211063022.DOI: 10.1177/20417314211063022.
    [38] LeeHJ,JangYJ.Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids[J].Int J Mol Sci,2018,19(3):711.DOI: 10.3390/ijms19030711.
    [39] FinnertyCC,JeschkeMG,BranskiLK,et al.Hypertrophic scarring: the greatest unmet challenge after burn injury[J].Lancet,2016,388(10052):1427-1436.DOI: 10.1016/S0140-6736(16)31406-4.
    [40] DeitchEA,WheelahanTM,RoseMP,et al.Hypertrophic burn scars: analysis of variables[J].J Trauma,1983,23(10):895-898.
    [41] YangJ,HuangZ,TanJ,et al.Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality[J].Bioact Mater,2023,32:260-276.DOI: 10.1016/j.bioactmat.2023.10.005.
    [42] 郇京宁.再议烧伤瘢痕治疗[J].中华烧伤杂志,2018,34(10):672-676.DOI: 10.3760/cma.j.issn.1009-2587.2018.10.005.
    [43] ZhangQ,ShiL,HeH,et al.Down-regulating scar formation by microneedles directly via a mechanical communication pathway[J].ACS Nano,2022,16(7):10163-10178.DOI: 10.1021/acsnano.1c11016.
  • 加载中
图(1)
计量
  • 文章访问数:  2807
  • HTML全文浏览量:  76
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28

目录

    /

    返回文章
    返回