留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二甲双胍对人增生性瘢痕成纤维细胞增殖及纤维化蛋白表达的影响及其机制

谢文博 胡晓龙 魏双 石继红

谢文博, 胡晓龙, 魏双, 等. 二甲双胍对人增生性瘢痕成纤维细胞增殖及纤维化蛋白表达的影响及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 268-276. DOI: 10.3760/cma.j.cn501225-20231220-00259.
引用本文: 谢文博, 胡晓龙, 魏双, 等. 二甲双胍对人增生性瘢痕成纤维细胞增殖及纤维化蛋白表达的影响及其机制[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 268-276. DOI: 10.3760/cma.j.cn501225-20231220-00259.
Xie WB,Hu XL,Wei S,et al.Effects and mechanism of metformin on the proliferation and expression of fibrotic proteins of human hypertrophic scar fibroblasts[J].Chin J Burns Wounds,2025,41(3):268-276.DOI: 10.3760/cma.j.cn501225-20231220-00259.
Citation: Xie WB,Hu XL,Wei S,et al.Effects and mechanism of metformin on the proliferation and expression of fibrotic proteins of human hypertrophic scar fibroblasts[J].Chin J Burns Wounds,2025,41(3):268-276.DOI: 10.3760/cma.j.cn501225-20231220-00259.

二甲双胍对人增生性瘢痕成纤维细胞增殖及纤维化蛋白表达的影响及其机制

doi: 10.3760/cma.j.cn501225-20231220-00259
基金项目: 

国家自然科学基金面上项目 82172209

详细信息
    通讯作者:

    石继红,Email:biojhshi@126.com

Effects and mechanism of metformin on the proliferation and expression of fibrotic proteins of human hypertrophic scar fibroblasts

Funds: 

General Program of National Natural Science Foundation of China 82172209

More Information
  • 摘要:   目的  探讨二甲双胍对人增生性瘢痕(HS)成纤维细胞(Fb)增殖及纤维化蛋白表达的影响及其机制。  方法  该研究为实验研究。收集2021年6月—2022年6月于空军军医大学第一附属医院烧伤与皮肤外科行HS切除术的5例HS患者(男3例、女2例,年龄21~36岁)的HS组织,分离、培养Fb并取第5~7代Fb进行实验。取Fb,分别在其培养基中加入磷酸盐缓冲液(PBS)或终物质的量浓度为5、10、20、40 mmol/L的二甲双胍培养,培养48 h,采用细胞计数试剂盒-8(CCK-8)检测细胞增殖活性并计算细胞增殖抑制率,采用羟脯氨酸测定试剂盒检测细胞培养上清液中羟脯氨酸含量,采用蛋白质印迹法检测细胞中蛋白激酶B(Akt)、哺乳动物雷帕霉素靶蛋白(mTOR)的磷酸化水平并计算磷酸化Akt(p-Akt)与Akt比值、磷酸化mTOR(p-mTOR)与mTOR比值;培养24 h,采用实时荧光定量反转录PCR法检测细胞中Ⅰ型胶原、Ⅲ型胶原和α-平滑肌肌动蛋白(α-SMA)的mRNA表达。另取Fb分为对照组(常规培养)和LY294002组、二甲双胍组、LY294002+二甲双胍组,后3组细胞培养基中分别加入LY294002、二甲双胍、LY294002+二甲双胍培养,LY294002与二甲双胍的终物质的量浓度分别为20 μmol/L、10 mmol/L,于培养0(即刻)、24、48 h采用CCK-8检测细胞增殖活性,培养48 h采用蛋白质印迹法检测细胞中Akt、mTOR的磷酸化水平并计算p-Akt与Akt比值、p-mTOR与mTOR比值。细胞增殖抑制率实验样本数为4,其余实验样本数为3。  结果  培养48 h,与经PBS处理比较,经5、10、20、40 mmol/L二甲双胍处理细胞的增殖抑制率均显著升高(t值分别为10.69、14.20、19.73、52.54,P<0.05),经10、20、40 mmol/L二甲双胍处理细胞培养上清液中羟脯氨酸含量均显著降低(t值分别为8.06、7.86、10.25,P<0.05),经10、20、40 mmol/L二甲双胍处理细胞中p-Akt与Akt比值及经20、40 mmol/L二甲双胍处理细胞中p-mTOR与mTOR比值均显著降低(t值分别为2.82、4.28、9.88及5.66、9.08,P<0.05);培养24 h,与经PBS处理比较,经5、10、20、40 mmol/L二甲双胍处理细胞中Ⅰ型胶原及α-SMA的mRNA表达及经10、20、40 mmol/L二甲双胍处理细胞中Ⅲ型胶原的mRNA表达均显著降低(t值分别为4.35、8.53、9.57、14.77与4.14、5.58、7.89、9.37及5.18、6.85、9.15,P<0.05)。培养24、48 h,LY294002组(t值分别为6.30、13.60)、二甲双胍组(t值分别为6.47、10.69)细胞增殖活性均较对照组显著下降(P<0.05)。培养48 h,LY294002组、二甲双胍组细胞中p-Akt与Akt比值分别为0.554±0.027、0.681±0.029,均显著低于对照组的1.053±0.193(t值分别为4.45、3.31,P<0.05);LY294002+二甲双胍组细胞中p-Akt与Akt比值为0.387±0.023,显著低于二甲双胍组(t=5.95,P<0.05)。培养48 h,LY294002组细胞中p-mTOR与mTOR比值显著低于对照组(t=4.01,P<0.05),LY294002+二甲双胍组细胞中p-mTOR与mTOR比值显著低于二甲双胍组(t=6.05,P<0.05)。  结论  二甲双胍可以通过磷脂酰肌醇3-激酶/Akt/mTOR信号通路抑制人HS中Fb增殖及Ⅰ型胶原、Ⅲ型胶原、α-SMA等纤维化蛋白的表达。

     

  • 参考文献(40)

    [1] MarnerosAG,KriegT.Keloids--clinical diagnosis, pathogenesis, and treatment options[J].J Dtsch Dermatol Ges,2004,2(11):905-913.DOI: 10.1046/j.1439-0353.2004.04077.x.
    [2] ZhangT,WangXF,WangZC,et al.Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation[J].Biomed Pharmacother,2020,129:110287.DOI: 10.1016/j.biopha.2020.110287.
    [3] 张清怡,张丽霞,韩东晖,等.内皮唾液酸蛋白在人增生性瘢痕中的表达及其对成纤维细胞表型的调控[J].中华烧伤与创面修复杂志,2023,39(12):1168-1174.DOI: 10.3760/cma.j.cn501225-20231030-00154.
    [4] 金剑,储云高.海藻糖凝胶对大鼠全层皮肤缺损创面及兔耳瘢痕增生的影响[J].中华烧伤与创面修复杂志,2024,40(7):679-688.DOI: 10.3760/cma.j.cn501225-20240118-00020.
    [5] 吴虹林,陈咏菲,李舒婷,等.双样本双向孟德尔随机化法分析人免疫细胞与增生性瘢痕之间的因果关系[J].中华烧伤与创面修复杂志,2024,40(6):572-578.DOI: 10.3760/cma.j.cn501225-20240203-00046.
    [6] AsaiA,ShutoY,NagaoM,et al.Metformin attenuates early-stage atherosclerosis in mildly hyperglycemic Oikawa-Nagao mice[J].J Atheroscler Thromb,2019,26(12):1075-1083.DOI: 10.5551/jat.48223.
    [7] WangQ,ZhangM,TorresG,et al.Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission[J].Diabetes,2017,66(1):193-205.DOI: 10.2337/db16-0915.
    [8] BharathLP,NikolajczykBS.The intersection of metformin and inflammation[J].Am J Physiol Cell Physiol,2021,320(5):C873-C879.DOI: 10.1152/ajpcell.00604.2020.
    [9] FengJ,WangX,YeX,et al.Mitochondria as an important target of metformin: the mechanism of action, toxic and side effects, and new therapeutic applications[J].Pharmacol Res,2022,177:106114.DOI: 10.1016/j.phrs.2022.106114.
    [10] MaR,YiB,RikerAI,et al.Metformin and cancer immunity[J].Acta Pharmacol Sin,2020,41(11):1403-1409.DOI: 10.1038/s41401-020-00508-0.
    [11] ForetzM,GuigasB,BertrandL,et al.Metformin: from mechanisms of action to therapies[J].Cell Metab,2014,20(6):953-966.DOI: 10.1016/j.cmet.2014.09.018.
    [12] SaishoY.Metformin and inflammation: its potential beyond glucose-lowering effect[J].Endocr Metab Immune Disord Drug Targets,2015,15(3):196-205.DOI: 10.2174/1871530315666150316124019.
    [13] HeH,KeR,LinH,et al.Metformin, an old drug, brings a new era to cancer therapy[J].Cancer J,2015,21(2):70-74.DOI: 10.1097/PPO.0000000000000103.
    [14] KitaY,TakamuraT,MisuH,et al.Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis[J].PLoS One,2012,7(9):e43056.DOI: 10.1371/journal.pone.0043056.
    [15] Ladeiras-LopesR,Fontes-CarvalhoR,BettencourtN,et al.Novel therapeutic targets of metformin: metabolic syndrome and cardiovascular disease[J].Expert Opin Ther Targets,2015,19(7):869-877.DOI: 10.1517/14728222.2015.1025051.
    [16] NestiL,NataliA.Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data[J].Nutr Metab Cardiovasc Dis,2017,27(8):657-669.DOI: 10.1016/j.numecd.2017.04.009.
    [17] LiY,LiuX,WanL,et al.Metformin suppresses cardiac fibroblast proliferation under high-glucose conditions via regulating the mitochondrial complex I protein Grim-19 involved in the Sirt1/Stat3 signaling pathway[J].Free Radic Biol Med,2023,206:1-12.DOI: 10.1016/j.freeradbiomed.2023.06.013.
    [18] ZhengW,SongJ,ZhangY,et al.Metformin prevents peritendinous fibrosis by inhibiting transforming growth factor-β signaling[J].Oncotarget,2017,8(60):101784-101794.DOI: 10.18632/oncotarget.21695.
    [19] RuanG,WuF,ShiD,et al.Metformin: update on mechanisms of action on liver diseases[J].Front Nutr,2023,10:1327814.DOI: 10.3389/fnut.2023.1327814.
    [20] LiT,WangG.Computer-aided targeting of the PI3K/Akt/mTOR pathway: toxicity reduction and therapeutic opportunities[J].Int J Mol Sci,2014,15(10):18856-18891.DOI: 10.3390/ijms151018856.
    [21] PengY,WangY,ZhouC,et al.PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway?[J].Front Oncol,2022,12:819128.DOI: 10.3389/fonc.2022.819128.
    [22] FangZ,MengQ,XuJ,et al.Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives[J].Cancer Commun (Lond),2023,43(1):3-41.DOI: 10.1002/cac2.12392.
    [23] JunEK,ZhangQ,YoonBS,et al.Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways[J].Int J Mol Sci,2014,15(1):605-628.DOI: 10.3390/ijms15010605.
    [24] JereSW,HoureldNN,AbrahamseH.Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing[J].Cytokine Growth Factor Rev,2019,50:52-59.DOI: 10.1016/j.cytogfr.2019.03.001.
    [25] 高彦令,刘长胜,赵锐,等.小鼠皮肤损伤愈合过程中PI3K/Akt通路的作用[J].法医学杂志,2016,32(1):7-12.DOI: 10.3969/j.issn.1004-5619.2016.01.002.
    [26] TuT,HuangJ,LinM,et al.CUDC-907 reverses pathological phenotype of keloid fibroblasts in vitro and in vivo via dual inhibition of PI3K/Akt/mTOR signaling and HDAC2[J].Int J Mol Med,2019,44(5):1789-1800.DOI: 10.3892/ijmm.2019.4348.
    [27] GlavianoA,FooASC,LamHY,et al.PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J].Mol Cancer,2023,22(1):138.DOI: 10.1186/s12943-023-01827-6.
    [28] GauglitzGG,KortingHC,PavicicT,et al.Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies[J].Mol Med,2011,17(1/2):113-125.DOI: 10.2119/molmed.2009.00153.
    [29] JiangQ,ChenJ,TianF,et al.Silicone gel sheeting for treating hypertrophic scars[J].Cochrane Database Syst Rev,2021,9(9):CD013357.DOI: 10.1002/14651858.CD013357.pub2.
    [30] MurakamiT,ShigekiS.Pharmacotherapy for keloids and hypertrophic scars[J].Int J Mol Sci,2024,25(9):4674.DOI: 10.3390/ijms25094674.
    [31] ChenL,LiJ,LiQ,et al.Non-coding RNAs: the new insight on hypertrophic scar[J].J Cell Biochem,2017,118(8):1965-1968.DOI: 10.1002/jcb.25873.
    [32] SiuMC,VoiseyJ,ZangT,et al.MicroRNAs involved in human skin burns, wound healing and scarring[J].Wound Repair Regen,2023,31(4):439-453.DOI: 10.1111/wrr.13100.
    [33] ZhouX,XieY,XiaoH,et al.MicroRNA-519d inhibits proliferation and induces apoptosis of human hypertrophic scar fibroblasts through targeting Sirtuin 7[J].Biomed Pharmacother,2018,100:184-190.DOI: 10.1016/j.biopha.2018.01.158.
    [34] ShiW,WuY,BianD.p75NTR silencing inhibits proliferation, migration, and extracellular matrix deposition of hypertrophic scar fibroblasts by activating autophagy through inhibiting the PI3K/Akt/mTOR pathway[J].Can J Physiol Pharmacol,2021,99(4):349-359.DOI: 10.1139/cjpp-2020-0219.
    [35] SchusterR,YounesiF,EzzoM,et al.The role of myofibroblasts in physiological and pathological tissue repair[J].Cold Spring Harb Perspect Biol,2023,15(1):a041231.DOI: 10.1101/cshperspect.a041231.
    [36] LianN,LiT.Growth factor pathways in hypertrophic scars: molecular pathogenesis and therapeutic implications[J].Biomed Pharmacother,2016,84:42-50.DOI: 10.1016/j.biopha.2016.09.010.
    [37] SeoCH,CuiHS,KimJB.Calpastatin-mediated inhibition of calpain ameliorates skin scar formation after burn injury[J].Int J Mol Sci,2021,22(11):5771.DOI: 10.3390/ijms22115771.
    [38] YuL,WeiJ,LiuP.Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J].Semin Cancer Biol,2022,85:69-94.DOI: 10.1016/j.semcancer.2021.06.019.
    [39] LiY,LuY,ZhaoY,et al.Deciphering the wound-healing potential of collagen peptides and the molecular mechanisms: a review[J].J Agric Food Chem,2024,72(47):26007-26026.DOI: 10.1021/acs.jafc.4c02960.
    [40] ZhaoS,LiuH,WangH,et al.Inhibition of phosphatidylinositol 3-kinase catalytic subunit alpha by miR-203a-3p reduces hypertrophic scar formation via phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway[J/OL].Burns Trauma,2024,12:tkad048[2025-01-05].https://pubmed.ncbi.nlm.nih.gov/38179473/.DOI: 10.1093/burnst/tkad048.
  • 图  1  蛋白质印迹法检测的人增生性瘢痕成纤维细胞经加入PBS或各种终物质的量浓度二甲双胍培养48 h后Akt与mTOR磷酸化水平

    注:Akt为蛋白激酶B,p‑Akt为磷酸化Akt,mTOR为哺乳动物雷帕霉素靶蛋白,p‑mTOR为磷酸化mTOR,PBS为磷酸盐缓冲液;条带上方1、2、3、4、5分别指示经PBS或5、10、20、40 mmol/L二甲双胍处理细胞

    图  2  蛋白质印迹法检测的4组人增生性瘢痕成纤维细胞培养48 h细胞中Akt和mTOR磷酸化水平(x¯±s

    注:Akt为蛋白激酶B,p-Akt为磷酸化Akt,mTOR为哺乳动物雷帕霉素靶蛋白,p-mTOR为磷酸化mTOR;条带上方1、2、3、4分别指示细胞常规培养的对照组和细胞培养基中加入LY294002、二甲双胍、LY294002+二甲双胍培养的LY294002组、二甲双胍组、LY294002+二甲双胍组,LY294002与二甲双胍的终物质的量浓度分别为20 μmol/L、10 mmol/L

    Table  1.   人增生性瘢痕成纤维细胞经加入PBS或各种终物质的量浓度二甲双胍培养24 h后细胞中纤维化蛋白的mRNA表达比较(x¯±s

    处理因素样本数Ⅰ型胶原Ⅲ型胶原α-平滑肌肌动蛋白
    PBS30.98±0.071.01±0.091.003±0.078
    5 mmol/L二甲双胍30.76±0.050.82±0.050.750±0.020
    10 mmol/L二甲双胍30.56±0.050.59±0.070.627±0.046
    20 mmol/L二甲双胍30.46±0.070.46±0.070.457±0.054
    40 mmol/L二甲双胍30.32±0.040.39±0.030.427±0.032
    F64.2630.5841.72
    P<0.001<0.001<0.001
    t14.352.574.14
    P10.0120.0620.014
    t28.535.185.58
    P20.0010.0070.005
    t39.576.857.89
    P30.0010.0020.001
    t414.779.159.37
    P40.0100.0010.001
    注:F值、P值为加入磷酸盐缓冲液(PBS)或各种终物质的量浓度二甲双胍培养后各指标总体比较所得;t1值与P1值、t2值与P2值、t3值与P3值、t4值与P4值分别为加入5、10、20、40 mmol/L二甲双胍培养与加入PBS培养后各指标比较所得
    下载: 导出CSV

    Table  2.   人增生性瘢痕成纤维细胞经加入PBS或各种终物质的量浓度二甲双胍培养48 h后Akt与mTOR磷酸化水平比较(x¯±s

    处理因素样本数p-Akt与Akt比值p-mTOR与mTOR比值
    PBS31.101±0.1010.875±0.087
    5 mmol/L二甲双胍31.064±0.0650.843±0.052
    10 mmol/L二甲双胍30.915±0.0530.806±0.058
    20 mmol/L二甲双胍30.799±0.0690.584±0.018
    40 mmol/L二甲双胍30.509±0.0250.396±0.028
    F37.6842.81
    P<0.001<0.001
    t10.530.54
    P10.6230.617
    t22.821.13
    P20.0480.321
    t34.285.66
    P30.0130.005
    t49.889.08
    P4<0.001<0.001
    注:Akt为蛋白激酶B,mTOR为哺乳动物雷帕霉素靶蛋白,p-Akt为磷酸化Akt,p-mTOR为磷酸化mTOR;Akt、mTOR磷酸化水平分别以p-Akt与Akt比值、p-mTOR与mTOR比值表示;F值、P值为加入磷酸盐缓冲液(PBS)或各种终物质的量浓度二甲双胍培养后各指标总体比较所得;t1值与P1值、t2值与P2值、t3值与P3值、t4值与P4值分别为加入5、10、20、40 mmol/L二甲双胍培养与加入PBS培养后各指标比较所得
    下载: 导出CSV

    Table  3.   4组人增生性瘢痕成纤维细胞培养各时间点增殖活性比较(x¯±s

    组别样本数0 h(即刻)24 h48 h
    对照组30.350±0.0210.907±0.0711.377±0.051
    LY294002组30.347±0.0310.557±0.0650.807±0.051
    二甲双胍组30.361±0.0400.621±0.0290.763±0.085
    LY294002+二甲双胍组30.372±0.0130.760±0.0860.811±0.020
    t10.166.3013.60
    P10.8820.003<0.001
    t20.396.4710.69
    P20.7180.003<0.001
    t31.591.570.96
    P30.1900.1920.393
    注:对照组细胞常规培养,后3组细胞培养基中分别加入LY294002、二甲双胍、LY294002+二甲双胍培养,LY294002与二甲双胍的终物质的量浓度分别为20 μmol/L、10 mmol/L;处理因素主效应,F=411.00,P<0.001;时间因素主效应,F=78.10,P<0.001;两者交互作用,F=25.79,P<0.001;t1值与P1值、t2值与P2值分别为LY294002组、二甲双胍组与对照组各时间点比较所得,t3值与P3值为LY294002+二甲双胍组与二甲双胍组各时间点比较所得
    下载: 导出CSV

    Table  4.   4组人增生性瘢痕成纤维细胞培养48 h细胞中Akt和mTOR磷酸化水平比较(x¯±s

    组别样本数p-Akt与Akt比值p-mTOR与mTOR比值
    对照组31.053±0.1930.958±0.181
    LY294002组30.554±0.0270.531±0.025
    二甲双胍组30.681±0.0290.787±0.057
    LY294002+二甲双胍组30.387±0.0230.321±0.089
    F24.5725.32
    P<0.001<0.001
    t14.454.01
    P10.0110.016
    t23.311.55
    P20.0300.195
    t35.956.05
    P30.0040.004
    注:Akt为蛋白激酶B,mTOR为哺乳动物雷帕霉素靶蛋白,p-Akt为磷酸化Akt,p-mTOR为磷酸化mTOR;Akt、mTOR磷酸化水平分别以p-Akt与Akt比值、p-mTOR与mTOR比值表示;对照组细胞常规培养,后3组细胞培养基中分别加入LY294002、二甲双胍、LY294002+二甲双胍培养,LY294002与二甲双胍的终物质的量浓度分别为20 μmol/L、10 mmol/L;F值、P值为4组间各指标总体比较所得;t1值与P1值、t2值与P2值分别为LY294002组、二甲双胍组与对照组各指标比较所得,t3值与P3值为LY294002+二甲双胍组与二甲双胍组各指标比较所得
    下载: 导出CSV
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  16
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20

目录

    /

    返回文章
    返回