留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水凝胶促进创面血管化的研究进展

石傲 王运帷 康宇晨 王刚 刘毅

石傲, 王运帷, 康宇晨, 等. 水凝胶促进创面血管化的研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 295-300. DOI: 10.3760/cma.j.cn501225-20240521-00193.
引用本文: 石傲, 王运帷, 康宇晨, 等. 水凝胶促进创面血管化的研究进展[J]. 中华烧伤与创面修复杂志, 2025, 41(3): 295-300. DOI: 10.3760/cma.j.cn501225-20240521-00193.
Shi A,Wang YW,Kang YC,et al.Research advances on hydrogels for promoting wound vascularization[J].Chin J Burns Wounds,2025,41(3):295-300.DOI: 10.3760/cma.j.cn501225-20240521-00193.
Citation: Shi A,Wang YW,Kang YC,et al.Research advances on hydrogels for promoting wound vascularization[J].Chin J Burns Wounds,2025,41(3):295-300.DOI: 10.3760/cma.j.cn501225-20240521-00193.

水凝胶促进创面血管化的研究进展

doi: 10.3760/cma.j.cn501225-20240521-00193
基金项目: 

国家自然科学基金地区科学基金项目 82360444

甘肃省高校产业支撑项目 2023CYZC-02

详细信息
    通讯作者:

    刘毅,Email:liuyi196402@163.com

Research advances on hydrogels for promoting wound vascularization

Funds: 

Regional Science Foundation Program of National Natural Science Foundation of China 82360444

Gansu Province University Industry Support Project 2023CYZC-02

More Information
  • 摘要: 高糖诱导的血管内皮细胞损伤是糖尿病创面难以愈合的主要病理因素,创面有效血管化一直是组织工程研究的核心挑战。基于水凝胶的可注射技术与三维生物打印技术,通过生物材料与先进制造工艺的协同创新,能够精确构建仿生组织结构,为功能性器官替代奠定基础。该综述重点讨论了可注射水凝胶与三维生物打印水凝胶在组织工程血管化中的协同策略、目前亟待发展的术中生物打印及其协同血管化策略的临床转化,有望为糖尿病创面修复提供新的策略。

     

  • 所有作者声明不存在利益冲突
  • 参考文献(51)

    [1] SenCK. Human wound and its burden: updated 2020 compendium of estimates[J]. Adv Wound Care (New Rochelle), 2021,10(5):281-292. DOI: 10.1089/wound.2021.0026.
    [2] ArmstrongDG, SwerdlowMA, ArmstrongAA, et al. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer[J]. J Foot Ankle Res, 2020,13(1):16. DOI: 10.1186/s13047-020-00383-2.
    [3] DixonD, EdmondsM. Managing diabetic foot ulcers: pharmacotherapy for wound healing[J]. Drugs, 2021,81(1):29-56. DOI: 10.1007/s40265-020-01415-8.
    [4] PatelS, SrivastavaS, SinghMR, et al. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing[J]. Biomed Pharmacother, 2019,112:108615. DOI: 10.1016/j.biopha.2019.108615.
    [5] 罗高兴, 卢毅飞, 黄灿. 功能性水凝胶促进皮肤创面的修复[J]. 中华烧伤与创面修复杂志, 2023,39(1):9-14. DOI: 10.3760/cma.j.cn501225-20221123-00503.
    [6] 陈跃华,徐俊,徐兰举,等.水凝胶敷料对糖尿病足创面的促愈合作用研究进展[J].中华烧伤与创面修复杂志,2022,38(1):95-98.DOI: 10.3760/cma.j.cn501120-20200827-00393.
    [7] WangS,ChiJ,JiangZ,et al.A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute[J].Carbohydr Polym,2021,256:117519.DOI: 10.1016/j.carbpol.2020.117519.
    [8] ZongL,TengR,ZhangH,et al.Ultrasound-responsive HBD peptide hydrogel with antibiofilm capability for fast diabetic wound healing[J].Adv Sci (Weinh),2024,11(42):e2406022.DOI: 10.1002/advs.202406022.
    [9] CaoY,JiangY,BaiR,et al.A multifunctional protein-based hydrogel with Au nanozyme-mediated self generation of H2S for diabetic wound healing[J].Int J Biol Macromol,2024,271(Pt 1):132560.DOI: 10.1016/j.ijbiomac.2024.132560.
    [10] WangS,ZhaoQ,LiJ,et al.Morphing-to-adhesion polysaccharide hydrogel for adaptive biointerfaces[J].ACS Appl Mater Interfaces,2022,14(37):42420-42429.DOI: 10.1021/acsami.2c10117.
    [11] 周紫萱,姜耀男,肖仕初.原位成形可注射水凝胶特性及其促创面愈合作用研究进展[J].中华烧伤杂志,2021,37(1):82-85.DOI: 10.3760/cma.j.cn501120-20200428-00243.
    [12] ChengQP,HsuSH.A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing[J].Acta Biomater,2023,164:124-138.DOI: 10.1016/j.actbio.2023.04.023.
    [13] 付小兵.生物材料是创烧伤救治与创面修复研究的新方向[J].中华烧伤与创面修复杂志,2025,41(1):1-4.DOI: 10.3760/cma.j.cn501225-20241125-00461.
    [14] GuoY, MeiF, HuangY, et al. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis[J]. Bioact Mater, 2021,7:364-376. DOI: 10.1016/j.bioactmat.2021.05.033.
    [15] WangH, YuH, ZhouX, et al. An overview of extracellular matrix-based bioinks for 3D bioprinting[J]. Front Bioeng Biotechnol, 2022,10:905438. DOI: 10.3389/fbioe.2022.905438.
    [16] ZhuH, XuJ, ZhaoM, et al. Adhesive, injectable, and ROS-responsive hybrid polyvinyl alcohol (PVA) hydrogel co-delivers metformin and fibroblast growth factor 21 (FGF21) for enhanced diabetic wound repair[J]. Front Bioeng Biotechnol, 2022,10:968078. DOI: 10.3389/fbioe.2022.968078.
    [17] NuutilaK, SamandariM, EndoY, et al. In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing[J]. Bioact Mater, 2021,8:296-308. DOI: 10.1016/j.bioactmat.2021.06.030.
    [18] ShenJ,JiY,XieM,et al.Cell-modified bioprinted microspheres for vascular regeneration[J].Mater Sci Eng C Mater Biol Appl,2020,112:110896.DOI: 10.1016/j.msec.2020.110896.
    [19] HaaseK, GillrieMR, HajalC, et al. Pericytes contribute to dysfunction in a human 3D model of placental microvasculature through VEGF-Ang-Tie2 signaling[J]. Adv Sci (Weinh), 2019,6(23):1900878. DOI: 10.1002/advs.201900878.
    [20] WangY, ShenK, SunY, et al. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A-driven angiogenesis[J/OL]. Burns Trauma, 2023,11:tkad034[2024-05-21]. https://pubmed.ncbi.nlm.nih.gov/37908562/. DOI: 10.1093/burnst/tkad034.
    [21] XiongY, LinZ, BuP, et al. A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing[J]. Adv Mater, 2023,35(19):e2212300. DOI: 10.1002/adma.202212300.
    [22] VanlandewijckM, HeL, MäeMA, et al. A molecular atlas of cell types and zonation in the brain vasculature[J]. Nature, 2018,554(7693):475-480. DOI: 10.1038/nature25739.
    [23] WangC, LiJ, SinhaS, et al. Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels[J]. Biomaterials, 2019,202:35-44. DOI: 10.1016/j.biomaterials.2019.02.024.
    [24] 丁能,付新新,吴海媚,等. 甲基丙烯酸酐化明胶水凝胶在创面修复领域中的应用研究进展[J]. 中华烧伤与创面修复杂志,2022,38(11):1096-1100. DOI: 10.3760/cma.j.cn501225-20220308-00056.
    [25] KargozarS, BainoF, HamzehlouS, et al. Nanotechnology for angiogenesis: opportunities and challenges[J]. Chem Soc Rev, 2020,49(14):5008-5057. DOI: 10.1039/c8cs01021h.
    [26] DarweeshRS, AyoubNM, NazzalS. Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications[J]. Int J Nanomedicine, 2019,14:7643-7663. DOI: 10.2147/IJN.S223941.
    [27] BakadiaBM, ZhengR, Qaed AhmedAA, et al. Teicoplanin-decorated reduced graphene oxide incorporated silk protein hybrid hydrogel for accelerating infectious diabetic wound healing and preventing diabetic foot osteomyelitis[J]. Adv Healthc Mater, 2024,13(20):e2304572. DOI: 10.1002/adhm.202304572.
    [28] HeS, LiZ, WangL, et al. A nanoenzyme-modified hydrogel targets macrophage reprogramming-angiogenesis crosstalk to boost diabetic wound repair[J]. Bioact Mater, 2024,35:17-30. DOI: 10.1016/j.bioactmat.2024.01.005.
    [29] ZhuS, ZhaoB, LiM, et al. Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing[J]. Bioact Mater, 2023,26:306-320. DOI: 10.1016/j.bioactmat.2023.03.005.
    [30] TuC, LuH, ZhouT, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J]. Biomaterials, 2022,286:121597. DOI: 10.1016/j.biomaterials.2022.121597.
    [31] 严珍珍,王雨翔,张停琳,等. 负载银纳米颗粒小球藻的明胶/聚乙二醇水凝胶的性能及其对小鼠全层皮肤缺损感染创面愈合的作用[J]. 中华烧伤与创面修复杂志,2024,40(1):33-42. DOI: 10.3760/cma.j.cn501225-20231020-00126.
    [32] ChenY, WangX, TaoS, et al. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties[J]. Mil Med Res, 2023,10(1):37. DOI: 10.1186/s40779-023-00473-9.
    [33] ChenL, ZhengB, XuY, et al. Nano hydrogel-based oxygen-releasing stem cell transplantation system for treating diabetic foot[J]. J Nanobiotechnology, 2023,21(1):202. DOI: 10.1186/s12951-023-01925-z.
    [34] WuY, WangY, LongL, et al. A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing[J]. J Control Release, 2022,341:147-165. DOI: 10.1016/j.jconrel.2021.11.027.
    [35] BernalPN, DelrotP, LoterieD, et al. Volumetric bioprinting of complex living-tissue constructs within seconds[J]. Adv Mater, 2019,31(42):e1904209. DOI: 10.1002/adma.201904209.
    [36] KjarA, McFarlandB, MechamK, et al. Engineering of tissue constructs using coaxial bioprinting[J]. Bioact Mater, 2021,6(2):460-471. DOI: 10.1016/j.bioactmat.2020.08.020.
    [37] ZhuW, QuX, ZhuJ, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture[J]. Biomaterials, 2017,124:106-115. DOI: 10.1016/j.biomaterials.2017.01.042.
    [38] HeidariF, SaadatmandM, SimorghS. Directly coaxial bioprinting of 3D vascularized tissue using novel bioink based on decellularized human amniotic membrane[J]. Int J Biol Macromol, 2023,253(Pt 4):127041. DOI: 10.1016/j.ijbiomac.2023.127041.
    [39] PanC, XuJ, GaoQ, et al. Sequentially suspended 3D bioprinting of multiple-layered vascular models with tunable geometries for in vitro modeling of arterial disorders initiation[J]. Biofabrication, 2023,15(4). DOI: 10.1088/1758-5090/aceffa.
    [40] BudharajuH, SundaramurthiD, SethuramanS. Embedded 3D bioprinting-an emerging strategy to fabricate biomimetic & large vascularized tissue constructs[J]. Bioact Mater, 2023,32:356-384. DOI: 10.1016/j.bioactmat.2023.10.012.
    [41] FangY, GuoY, WuB, et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks[J]. Adv Mater, 2023,35(22):e2205082. DOI: 10.1002/adma.202205082.
    [42] WagnerLE, MelnykO, DuffettBE, et al. Mouse models and human islet transplantation sites for intravital imaging[J]. Front Endocrinol (Lausanne), 2022,13:992540. DOI: 10.3389/fendo.2022.992540.
    [43] ZhuM, LiW, DongX, et al. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration[J]. Nat Commun, 2019,10(1):4620. DOI: 10.1038/s41467-019-12545-3.
    [44] LiangZ, SunD, LuS, et al. Implantation underneath the abdominal anterior rectus sheath enables effective and functional engraftment of stem-cell-derived islets[J]. Nat Metab, 2023,5(1):29-40. DOI: 10.1038/s42255-022-00713-7.
    [45] KinneySM, OrtalezaK, VlahosAE, et al. Degradable methacrylic acid-based synthetic hydrogel for subcutaneous islet transplantation[J]. Biomaterials, 2022,281:121342. DOI: 10.1016/j.biomaterials.2021.121342.
    [46] PepperAR, BruniA, PawlickR, et al. Posttransplant characterization of long-term functional hESC-derived pancreatic endoderm grafts[J]. Diabetes, 2019,68(5):953-962. DOI: 10.2337/db18-0788.
    [47] KuppanP, KellyS, SeebergerK, et al. Bioabsorption of subcutaneous nanofibrous scaffolds influences the engraftment and function of neonatal porcine islets[J]. Polymers (Basel), 2022,14(6):1120. DOI: 10.3390/polym14061120.
    [48] MoncalKK, Tigli AydınRS, GodzikKP, et al. Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats[J]. Biomaterials, 2022,281:121333. DOI: 10.1016/j.biomaterials.2021.121333.
    [49] AlbannaM, BinderKW, MurphySV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds[J]. Sci Rep, 2019,9(1):1856. DOI: 10.1038/s41598-018-38366-w.
    [50] MoncalKK, GudapatiH, GodzikKP, et al. Intra-operative bioprinting of hard, soft, and hard/soft composite tissues for craniomaxillofacial reconstruction[J]. Adv Funct Mater, 2021,31(29):2010858. DOI: 10.1002/adfm.202010858.
    [51] WuY, RavnicDJ, OzbolatIT. Intraoperative bioprinting: repairing tissues and organs in a surgical setting[J]. Trends Biotechnol, 2020,38(6):594-605. DOI: 10.1016/j.tibtech.2020.01.004.
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回