留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

糖尿病大鼠创面组织的靶向能量代谢组学研究

王晓阳 扈煜婕 王晓川 赵洁 张基勋 姜笃银

王晓阳, 扈煜婕, 王晓川, 等. 糖尿病大鼠创面组织的靶向能量代谢组学研究[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 137-144. DOI: 10.3760/cma.j.cn501225-20241014-00385.
引用本文: 王晓阳, 扈煜婕, 王晓川, 等. 糖尿病大鼠创面组织的靶向能量代谢组学研究[J]. 中华烧伤与创面修复杂志, 2025, 41(2): 137-144. DOI: 10.3760/cma.j.cn501225-20241014-00385.
Liu LL,Ding YP,Xia SS,et al.Interpretation of 2022 edition of Ethiopia 'Evidence-based practical guideline for procedural pain management and sedation for burn pediatrics patients undergoing wound care procedures'[J].Chin J Burns Wounds,2024,40(9):897-900.DOI: 10.3760/cma.j.cn501225-20240216-00060.
Citation: Wang XY,Hu YJ,Wang XC,et al.Targeted energy metabolomics study on wound tissue of diabetic rats[J].Chin J Burns Wounds,2025,41(2):137-144.DOI: 10.3760/cma.j.cn501225-20241014-00385.

糖尿病大鼠创面组织的靶向能量代谢组学研究

doi: 10.3760/cma.j.cn501225-20241014-00385
基金项目: 

国家自然科学基金面上项目 81873934

国家自然科学基金青年科学基金项目 82202454

王正国创伤医学基金会生长因子复兴计划 SZYZ-TR-09

山东省科技发展计划 2015GSF118041

山东省自然科学基金青年基金项目 ZR2020QH168

济南市科技计划 202225065

详细信息
    通讯作者:

    姜笃银,Email:jdybs2@vip.163.com

Targeted energy metabolomics study on wound tissue of diabetic rats

Funds: 

General Program of National Natural Science Foundation of China 81873934

The Youth Science Fund Project of National Natural Science Foundation of China 82202454

Growth Factor Rejuvenation Plan of Wang Zhengguo Foundation for Traumatic Medicine SZYZ-TR-09

Science and Technology Development Project of Shandong Province of China 2015GSF118041

The Youth Fund Project of Natural Science Foundation of Shandong Province of China ZR2020QH168

Jinan Science and Technology Plan 202225065

More Information
  • 摘要:   目的  探讨糖尿病大鼠创面组织能量代谢变化。  方法  该研究为实验研究。将6只8周龄的雄性SD大鼠按照随机数字表法分为造成糖尿病全层皮肤缺损创面的糖尿病组和仅造成全层皮肤缺损创面的对照组,每组3只。计算2组大鼠术后14 d创面愈合率。取2组大鼠术后14 d创面组织,借助色谱-质谱分析进行靶向能量代谢组学检测,筛选2组大鼠创面组织间比较,表达量有显著变化的差异能量代谢物并对差异能量代谢物进行京都基因与基因组百科全书富集分析。  结果  术后14 d,糖尿病组大鼠创面愈合率为(68.3±2.8)%,显著低于对照组的(98.1±1.2)%(t=16.92,P<0.05)。术后14 d,与对照组相比,糖尿病组大鼠创面组织中顺乌头酸、烟酰胺腺嘌呤二核苷酸磷酸、5'-鸟苷二磷酸表达量均显著升高(t值分别为4.74、3.09、3.99,P<0.05),L-苹果酸、乳酸表达量均显著降低(t值分别为3.45、12.20,P<0.05);2组大鼠创面组织中另外21种能量代谢物表达量比较,差异均无统计学意义(P>0.05)。5种差异能量代谢物主要在胰高血糖素、Rap1、Ras、缺氧诱导因子1信号通路及三羧酸循环、丙酮酸代谢、线粒体自噬、胞吞作用途径中显著富集。  结论  糖尿病大鼠创面组织中乳酸及L-苹果酸表达量降低,顺乌头酸、烟酰胺腺嘌呤二核苷酸磷酸、5'-鸟苷二磷酸表达量升高;差异能量代谢物主要在氧化应激、能量调控、炎症反应等相关信号通路或途径中富集。

     

  • 王晓阳:酝酿和设计实验、进行实验研究和撰写论文;扈煜婕:整理数据、分析数据;王晓川:统计分析;赵洁、张基勋、姜笃银:研究指导、经费支持
    所有作者声明不存在利益冲突
  • 参考文献(41)

    [1] 施芳婷,沈佳琪,仵敏娟.糖尿病难愈性创面的发病机制研究进展[J].生命科学,2024,36(4):509-516.DOI: 10.13376/j.cbls/2024054.
    [2] JinQ,MaR.Metabolomics in diabetes and diabetic complications: insights from epidemiological studies[J].Cells,2021,10(11):2832.DOI: 10.3390/cells10112832.
    [3] 韩燕菲,李林东,王友,等.纳米氧化铈促进糖尿病大鼠创面愈合机制的代谢组学研究[J].中华糖尿病杂志,2019,11(2):120-125.DOI: 10.3760/cma.j.issn.1674-5809.2019.02.007.
    [4] 王齐,朱冠娅,谢挺,等.ATP代谢及嘌呤信号受体在糖尿病创面愈合炎症反应阶段的变化[J].上海交通大学学报(医学版),2020,40(1):10-17.DOI: 10.3969/j.issn.1674-8115.2020.01.002.
    [5] 葛奎,牛轶雯,谢挺,等.糖基化终末产物对糖尿病大鼠烧伤创面愈合的影响[J].中华烧伤杂志,2009,25(6):433-436.DOI: 10.3760/cma.j.issn.1009-2587.2009.06.012.
    [6] ZhangJ,YangP,LiuD,et al.Inhibiting hyper-O-GlcNAcylation of c-Myc accelerate diabetic wound healing by alleviating keratinocyte dysfunction[J/OL].Burns Trauma,2021,9:tkab031[2024-10-14].https://pubmed.ncbi.nlm.nih.gov/34646892/.DOI: 10.1093/burnst/tkab031.
    [7] Cadena SandovalM, HaeuslerRA. Bile acid metabolism in type 2 diabetes mellitus[J/OL]. Nat Rev Endocrinol, 2025(2025-01-06)[2025-01-20]. https://pubmed.ncbi.nlm.nih.gov/39757322/. DOI: 10.1038/s41574-024-01067-8. [published online ahead of print].
    [8] WangZ,ZhaoF,XuC,et al.Metabolic reprogramming in skin wound healing[J/OL].Burns Trauma,2024,12:tkad047[2024-10-14]. https://pubmed.ncbi.nlm.nih.gov/38179472/. DOI: 10.1093/burnst/tkad047.
    [9] GuptaA,RaghubirR.Energy metabolism in the granulation tissue of diabetic rats during cutaneous wound healing[J].Mol Cell Biochem,2005,270(1/2):71-77.DOI: 10.1007/s11010-005-5258-3.
    [10] PiraniH,SoltanyA,Hossein RezaeiM,et al.Lactate-induced autophagy activation: unraveling the therapeutic impact of high-intensity interval training on insulin resistance in type 2 diabetic rats[J].Sci Rep,2024,14(1):1108.DOI: 10.1038/s41598-023-50589-0.
    [11] XuH,WangY,KwonH,et al.Glucagon changes substrate preference in gluconeogenesis[J].J Biol Chem,2022,298(12):102708.DOI: 10.1016/j.jbc.2022.102708.
    [12] LiuH,PanM,LiuM,et al.Lactate: a rising star in tumors and inflammation[J].Front Immunol,2024,15:1496390.DOI: 10.3389/fimmu.2024.1496390.
    [13] SemenzaGL. Hpoxia-inducible factors in physiology and medicine[J].Cell,2012,148(3):399-408. DOI: 10.1016/i.cell.2012.01.021.
    [14] KamarajM,MoghimiN,McCarthyA,et al.Granular porous nanofibrous microspheres enhance cellular infiltration for diabetic wound healing[J].ACS Nano,2024,18(41):28335-28348.DOI: 10.1021/acsnano.4c10044.
    [15] GouldL, MahmoudiM. Analysis of biogenic amines and small molecule metabolites in human diabetic wound ulcer exudate[J]. ACS Pharmacol Transl Sci, 2024,7(9):2894-2899. DOI: 10.1021/acsptsci.4c00418.
    [16] LöfflerM,ZiekerD,WeinreichJ,et al.Wound fluid lactate concentration: a helpful marker for diagnosing soft-tissue infection in diabetic foot ulcers? Preliminary findings[J].Diabet Med,2011,28(2):175-178.DOI: 10.1111/j.1464-5491.2010.03123.x.
    [17] ChiZ,WangZP,WangGY,et al.Microbial biosynthesis and secretion of l-malic acid and its applications[J].Crit Rev Biotechnol,2016,36(1):99-107.DOI: 10.3109/07388551.2014.924474.
    [18] WuM,ZhaoY,TaoM,et al.Malate-based biodegradable scaffolds activate cellular energetic metabolism for accelerated wound healing[J].ACS Appl Mater Interfaces,2023,15(44):50836-50853.DOI: 10.1021/acsami.3c09394.
    [19] Bobyleva-GuarrieroV,WehbieRS,LardyHA.The role of malate in hormone-induced enhancement of mitochondrial respiration[J].Arch Biochem Biophys,1986,245(2):477-482.DOI: 10.1016/0003-9861(86)90240-7.
    [20] YousefiM, GhafarifarsaniH, RaissyM, et al. Effects of dietary malic acid supplementation on growth performance, antioxidant and immunological parameters, and intestinal gene expressions in rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 2023,563:738864.DOI: 10.1016/j.aquaculture.2022.738864.
    [21] Gerez de BurgosNM,GallinaF,BurgosC,et al.Effect of L-malate on pyruvate dehydrogenase activity of spermatozoa[J].Arch Biochem Biophys,1994,308(2):520-524.DOI: 10.1006/abbi.1994.1073.
    [22] ZhangY,SmallboneLA,diCenzoGC,et al.Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti[J].BMC Microbiol,2016,16(1):163.DOI: 10.1186/s12866-016-0780-x.
    [23] WangP,LuS,CaoX,et al.Physiological and transcriptome analyses of the effects of excessive water deficit on malic acid accumulation in apple[J].Tree Physiol,2023,43(5):851-866.DOI: 10.1093/treephys/tpac149.
    [24] XiaH,TangH,WangF,et al.An untargeted metabolomics approach reveals further insights of Lycium barbarum polysaccharides in high fat diet and streptozotocin-induced diabetic rats[J].Food Res Int,2019,116:20-29.DOI: 10.1016/j.foodres.2018.12.043.
    [25] RojasDR,KunerR,AgarwalN.Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy[J].J Mol Med (Berl),2019,97(6):845-854.DOI: 10.1007/s00109-019-01781-1.
    [26] WuXY,LiF,XuWD,et al.Anti-hyperglycemic activity of chromium(III) malate complex in alloxan-induced diabetic rats[J].Biol Trace Elem Res,2011,143(2):1031-1043.DOI: 10.1007/s12011-010-8916-6.
    [27] O'NeillLAJ,ArtyomovMN.Itaconate: the poster child of metabolic reprogramming in macrophage function[J].Nat Rev Immunol,2019,19(5):273-281.DOI: 10.1038/s41577-019-0128-5.
    [28] 徐俊,韩晓翠,何璐,等.糖尿病足患者创面中耐碳青霉烯类鲍曼不动杆菌的生物膜基因和群体感应基因分析[J].中华烧伤与创面修复杂志,2024,40(12):1166-1175.DOI: 10.3760/cma.j.cn501225-20240715-00269.
    [29] MichelucciA,CordesT,GhelfiJ,et al.Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production[J].Proc Natl Acad Sci U S A,2013,110(19):7820-7825.DOI: 10.1073/pnas.1218599110.
    [30] NaujoksJ,TabelingC,DillBD,et al.IFNs modify the proteome of legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid[J].PLoS Pathog,2016,12(2):e1005408.DOI: 10.1371/journal.ppat.1005408.
    [31] ZhangW,YangX,HuangX,et al.Bioinspired nanovesicles released from injectable hydrogels facilitate diabetic wound healing by regulating macrophage polarization and endothelial cell dysfunction[J].J Nanobiotechnology,2023,21(1):358.DOI: 10.1186/s12951-023-02119-3.
    [32] ZhaoR,XuL,ChenJ,et al.Itaconate induces tolerance of Staphylococcus aureus to aminoglycoside antibiotics[J].Front Microbiol,2024,15:1450085.DOI: 10.3389/fmicb.2024.1450085.
    [33] HammererF,ChangJH,DuncanD,et al.Small molecule restores itaconate sensitivity in salmonella enterica: a potential new approach to treating bacterial infections[J].Chembiochem,2016,17(16):1513-1517.DOI: 10.1002/cbic.201600078.
    [34] TanEHN,TangBL.Rab7a and mitophagosome formation[J].Cells,2019,8(3):224.DOI: 10.3390/cells8030224.
    [35] SatohT.Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes[J].Int J Mol Sci,2014,15(10):18677-18692.DOI: 10.3390/ijms151018677.
    [36] BaltenspergerK,KozmaLM,CherniackAD,et al.Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes[J].Science,1993,260(5116):1950-1952.DOI: 10.1126/science.8391166.
    [37] Díaz-FloresM,Ibáñez-HernándezMA,GalvánRE,et al.Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat[J].Life Sci,2006,78(22):2601-2607.DOI: 10.1016/j.lfs.2005.10.022.
    [38] XuY,OsborneBW,StantonRC.Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex[J].Am J Physiol Renal Physiol,2005,289(5):F1040-1047.DOI: 10.1152/ajprenal.00076.2005.
    [39] ZhangZ,ApseK,PangJ,et al.High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells[J].J Biol Chem,2000,275(51):40042-40047.DOI: 10.1074/jbc.M007505200.
    [40] ZhangZ,LiewCW,HandyDE,et al.High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis[J].FASEB J,2010,24(5):1497-1505.DOI: 10.1096/fj.09-136572.
    [41] KilIS,LeeJH,ShinAH,et al.Glycation-induced inactivation of NADP+-dependent isocitrate dehydrogenase: implications for diabetes and aging[J].Free Radic Biol Med,2004,37(11):1765-1778.DOI: 10.1016/j.freeradbiomed.2004.08.025.
  • 图  1  2组大鼠术后各时间点全层皮肤缺损创面愈合情况及组织病理学情况。1A、1B.分别为对照组术后0(即刻)、14 d创面情况,图1B中创面基本愈合;1C、1D.分别为糖尿病组术后0、14 d创面情况,图1D中仍有较大面积创面未愈合;1E、1F.分别为对照组、糖尿病组术后14 d创面上皮化情况,图1E中创面基本被新生上皮覆盖,图1F中创面尚未完全被新生上皮覆盖 苏木精-伊红×20;1G、1H.分别为对照组、糖尿病组术后14 d创面组织中胶原纤维形成和排列情况,图1G中胶原纤维丰富、排列有序,图1H中胶原纤维稀疏、排列杂乱 Masson×20

    注:糖尿病组大鼠诱导糖尿病后通过外科手术制备创面,对照组大鼠仅同前制备创面;红色箭头表示新生上皮,胶原纤维阳性染色为蓝色

    图  2  2组大鼠术后14 d全层皮肤缺损创面组织中5种差异能量代谢物的京都基因与基因组百科全书富集分析结果

    注:糖尿病组大鼠诱导糖尿病后通过外科手术制备创面,对照组大鼠仅同前制备创面;HIF-1为缺氧诱导因子1

    Table  1.   2组大鼠末次注射链脲佐菌素后各时间点一般体征比较(x¯±s

    组别与指标鼠数(只)0 d(即刻)7 d9 d11 d13 d
    对照组3
    体重(g)242.4±2.8257.6±2.9260.7±5.0268.7±2.4273.7±4.1
    饮水量(mL)17±320±319±322±422±6
    尿量(g)17.8±1.718.0±3.917.5±2.822.3±3.118.8±2.9
    血糖(mmol/L)5.68±0.325.55±0.175.82±0.475.86±0.105.58±0.23
    糖尿病组3
    体重(g)240.3±3.1213.6±4.3210.7±5.7208.9±3.1204.4±2.3
    饮水量(mL)18±355±860±354±657±6
    尿量(g)16.8±1.357.8±5.854.1±8.457.6±9.057.2±5.2
    血糖(mmol/L)5.48±0.2619.27±1.4820.35±0.9520.75±0.5120.03±0.29
    t10.8514.6511.4726.0525.87
    P10.441<0.001<0.001<0.001<0.001
    t20.266.8716.727.707.01
    P20.8060.002<0.0010.0020.002
    t30.839.837.146.4311.10
    P30.456<0.0010.0020.003<0.001
    t40.8615.9323.8149.6966.47
    P40.438<0.001<0.001<0.001<0.001
    注:糖尿病组大鼠注射链脲佐菌素构建糖尿病模型,对照组大鼠注射柠檬酸钠缓冲液;体重、饮水量、尿量、血糖时间因素主效应,F值分别为5.03、19.55、18.00、148.80,P值分别为0.059、<0.001、<0.001、<0.001;处理因素主效应,F值分别为367.40、589.00、493.60、4 582.00,P值均<0.001;两者交互作用,F值分别为143.00、14.20、15.51、147.20,P值均<0.001;t1值、P1值,t2值、P2值,t3值、P3值,t4值、P4值分别为2组各时间点体重、饮水量、尿量、血糖比较所得
    下载: 导出CSV

    Table  2.   2组大鼠术后14 d全层皮肤缺损创面组织中检测出的能量代谢物的表达量比较(μmol/g,x¯±s

    组别样本数乳酸顺乌头酸5'-鸟苷二磷酸L-苹果酸NADP硫胺素焦磷酸5'-腺苷三磷酸5'-腺苷二磷酸
    对照组319 383±87620.1±2.12.115±0.027225±159.9±2.63.73±0.3915.3±1.95.12±0.22
    糖尿病组310 261±95326.4±0.82.659±0.235194±514.5±0.54.32±0.2818.1±1.35.75±0.50
    t12.204.743.993.453.092.112.101.98
    P<0.0010.0090.0160.0260.0370.1030.1030.119
    注:糖尿病组大鼠诱导糖尿病后通过外科手术制备创面,对照组大鼠仅同前制备创面;NADP为烟酰胺腺嘌呤二核苷酸磷酸,NAD为烟酰胺腺嘌呤二核苷酸,PEP为磷酸烯醇式丙酮酸
    下载: 导出CSV
  • 王晓阳-视频.mp4
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  26
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-14

目录

    /

    返回文章
    返回