Shi Chenshuo, Wang Dali, Sun Jin, et al. Influence of human amniotic mesenchymal stem cells on macrophage phenotypes and inflammatory factors in full-thickness skin wounds of mice[J]. Chin j Burns, 2020, 36(4): 288-296. Doi: 10.3760/cma.j.cn501120-20191120-00438
Citation: Shi Chenshuo, Wang Dali, Sun Jin, et al. Influence of human amniotic mesenchymal stem cells on macrophage phenotypes and inflammatory factors in full-thickness skin wounds of mice[J]. Chin j Burns, 2020, 36(4): 288-296. Doi: 10.3760/cma.j.cn501120-20191120-00438

Influence of human amniotic mesenchymal stem cells on macrophage phenotypes and inflammatory factors in full-thickness skin wounds of mice

doi: 10.3760/cma.j.cn501120-20191120-00438
  • Received Date: 2019-11-20
    Available Online: 2021-10-28
  • Publish Date: 2020-04-20
  • Objective To explore the influence of human amniotic mesenchymal stem cells (hAMSCs) on the in vivo and in vitro regulation of macrophage phenotypes and inflammatory factors associated with wound healing of full-thickness skin wounds in mice. Methods Fresh amniotic membrane discarded from full-term delivery by 5 healthy pregnant women in the Department of Obstetrics and Gynecology of the Affiliated Hospital of Zunyi Medical University was used for the isolation and culture of hAMSCs by enzyme digestion method. The third passage of cells was used for identification of adipogenic and osteogenic differentiation. The fourth passage of cells was used for identification of hAMSCs surface markers. Ten C57BL/6 mice (all male, aged 6 to 8 weeks, the same gender and age below) were selected for extracting mouse peritoneal macrophages by intraperitoneal lavage, and M1-type macrophages were induced by Dulbecco′s modified eagle medium (DMEM) medium containing interferon-γ. The M1-type macrophages were divided into hAMSCs+ macrophage group and macrophage alone group. Then 1×104 hAMSCs/per well of fourth passage were added to macrophage in hAMSCs+ macrophage group and cultured in 2 mL DMEM medium for routine culture. In macrophage alone group, each well was only added with 2 mL DMEM medium for routine culture. On day 1 and 7 in culture, the content of interleukin-12 (IL-12), arginase 1, and IL-10 in the cell culture supernatant of the 2 groups were detected by enzyme-linked immunosorbent assay with sample number of 6/per group. (2) Full-thickness skin wound model was reproduced in the back of 56 C57BL/6 mice, which were divided into hAMSCs group and phosphate buffer solution (PBS) group using the random number table, with 28 mice in each group. Mice in hAMSCs group were subcutaneously injected with 100 μL of cell suspension containing 1×107 hAMSCs per mL in PBS suspension along the wound edge. While mice in PBS group were only subcutaneously injected with 100 μL PBS along the wound edge. On post injection day (PID) 1, 3, 7, and 14, 7 mice in the two groups were sacrificed respectively. Histopathological observation was performed with hematoxylin-eosin staining. The expressions of macrophage surface markers [CD68 and inducible nitric oxide synthase (iNOS) double positive cells and CD68 and arginase 1 double positive] in the wounds were detected by immunofluorescent staining. The mRNA expressions of IL-10, macrophage inflammatory protein 1α (MIP-1α), and MIP-2 in the wounds were detected by real-time fluorescent quantitative reverse transcription polymerase chain reaction. Data were statistically analyzed with analysis of variance for factorial design, t test, and Bonferroni correction. Results (1) On day 1 in culture, the content of IL-12 and arginase 1 in the cell culture supernatant of the two groups were similar (t=0.448, 0.536, P>0.05), and the content of IL-10 in the cell culture supernatant of hAMSCs+ macrophage group was significantly lower than that in macrophage alone group (t=14.722, P<0.01). On day 7 in culture, the content of IL-12 in the cell culture supernatant of hAMSCs+ macrophage group was significantly lower than that in macrophage alone group (t=13.226, P<0.01), and the content of arginase 1 and IL-10 was significantly higher than that in macrophage alone group (t=30.172, 31.406, P<0.01). (2) On PID 1, a large number of inflammatory cells infiltration were observed in the skin wounds of both groups. On PID 3, the inflammatory cells infiltration in the skin wounds increased in both groups, and the inflammatory cells infiltration in hAMSCs group was less than that in the PBS group. On PID 7, the inflammatory cells infiltration in the wounds decreased in both groups, and the inflammatory cells infiltration in hAMSCs group was less than that in the PBS group. On PID 14, no obvious inflammatory cells infiltration was observed in the wounds in the two groups. (3) On PID 1 and 14, the percentages of CD68 and iNOS double positive cells and CD68 and arginase 1 double positive cells in the wounds were similar in the two groups (t1 d=0.134, 0.693, t14 d=1.146, 2.585, P>0.05). On PID 3 and 7, the percentages of CD68 and iNOS double positive cells in the wounds in hAMSCs group were significantly lower than those of PBS group (t=6.396, 4.787, P<0.01), while the percentages of CD68 and arginase 1 double positive cells were significantly higher than those of PBS group (t=3.928, 4.473, P<0.01). (4) On PID 1, the mRNA expressions of IL-10 in the wounds of mice in the two groups were similar (t=2.005, P>0.05). On PID 3, 7, and 14, the mRNA expressions of IL-10 in the wounds of mice in hAMSCs group were significantly higher than those of PBS group (t=7.758, 124.355, 80.823, P<0.01). On PID 1, 3, 7, and 14, the mRNA expressions of MIP-1α and MIP-2 in the wounds of mice in hAMSCs group (0.341±0.212, 0.648±0.004, 0.611±0.106, 0.763±0.049, 1.377±0.099, 1.841±0.042, 1.181±0.035, 0.553±0.028) were significantly lower than those of PBS group (3.853±0.035, 6.914±0.163, 3.648±0.113, 2.250±0.046, 11.119±0.495, 8.634±0.092, 5.722±0.021, 4.862±0.036, t=43.198, 101.904, 51.845, 58.231, 51.074, 177.501, 291.752, 251.614, P<0.01). Conclusions hAMSCs demonstrates biological effects of promoting the transformation of M1-type macrophages into M2-type macrophages in full-thickness skin wounds of mice. They can up-regulate the expression of anti-inflammatory and anti-fibrotic factor IL-10, and down-regulate the expression of important inflammation mediated factors MIP-1α and MIP-2.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return