Volume 39 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Peng Y,Meng H,Li PX,et al.Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface[J].Chin J Burns Wounds,2023,39(3):290-295.DOI: 10.3760/cma.j.cn501225-20220407-00126.
Citation: Peng Y,Meng H,Li PX,et al.Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface[J].Chin J Burns Wounds,2023,39(3):290-295.DOI: 10.3760/cma.j.cn501225-20220407-00126.

Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface

doi: 10.3760/cma.j.cn501225-20220407-00126
Funds:

Construction Planning of Emergency Medical Rescue System in Important Strategic Regions of Hainan Island (South China Sea) in China 2022-XZ-11

More Information
  • Repairing chronic refractory wounds on the body surface is a complex medical problem involving all stages of wound healing. In recent years, stem cells (SCs) and tissue engineering (TE) have brought hope for repairing chronic refractory wounds. SCs have excellent regenerative and paracrine effects; various TE strategies have the potential to repair chronic refractory wounds on the body surface and also improve the delivery efficiency of SCs. This article reviews the pathological characteristics of chronic refractory wounds, SCs used to repair chronic refractory wounds, and SC-based TE wound repair strategies.

     

  • loading
  • [1]
    付小兵. 中国组织修复与再生医学健康发展的思考与实践[J]. 中华创伤杂志, 2021, 37(7):580-585. DOI: 10.3760/cma.j.cn501098-20210525-00319.
    [2]
    HuangS, FuX. Stem cell therapies and regenerative medicine in China[J]. Sci China Life Sci, 2014, 57(2):157-161. DOI: 10.1007/s11427-014-4608-3.
    [3]
    姜玉峰, 付小兵, 陆树良, 等. 中国人群体表慢性难愈合创面病原微生物学特征分析[J]. 感染、炎症、修复, 2011, 12(3):134-138. DOI: 10.3969/j.issn.1672-8521.2011.03.003.
    [4]
    DingX, TangQ, XuZ, et al. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice[J/OL]. Burns Trauma, 2022, 10:tkac014[2022-04-07].https://pubmed.ncbi.nlm.nih.gov/35611318/.DOI: 10.1093/burnst/tkac014.
    [5]
    DingYW, WangZY, RenZW, et al. Advances in modified hyaluronic acid-based hydrogels for skin wound healing[J]. Biomater Sci, 2022, 10(13):3393-3409. DOI: 10.1039/d2bm00397j.
    [6]
    SchilrreffP, AlexievU. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment[J]. Int J Mol Sci, 2022, 23(9):4928. DOI: 10.3390/ijms23094928.
    [7]
    WeiX, LiM, ZhengZ, et al. Senescence in chronic wounds and potential targeted therapies[J/OL]. Burns Trauma, 2022, 10:tkab045[2022-04-07].https://pubmed.ncbi.nlm.nih.gov/35187179/. DOI: 10.1093/burnst/tkab045.
    [8]
    PrzekoraA. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro?[J]. Cells, 2020, 9(7):1622. DOI: 10.3390/cells9071622.
    [9]
    王莹, 代彦丽, 朴金龙, 等. 炎症因子、生长因子以及凋亡因子在压疮慢性难愈合性创面中的表达及作用[J]. 中国应用生理学杂志, 2017, 33(2):181-184,188. DOI: 10.12047/j.cjap.5425.2017.046.
    [10]
    ChangM, NguyenTT. Strategy for treatment of infected diabetic foot ulcers[J]. Acc Chem Res, 2021, 54(5):1080-1093. DOI: 10.1021/acs.accounts.0c00864.
    [11]
    BerthiaumeF, HsiaHC. Regenerative approaches for chronic wounds[J]. Annu Rev Biomed Eng, 2022, 24:61-83. DOI: 10.1146/annurev-bioeng-010220-113008.
    [12]
    MarandaEL, Rodriguez-MenocalL, BadiavasEV. Role of mesenchymal stem cells in dermal repair in burns and diabetic wounds[J]. Curr Stem Cell Res Ther, 2017, 12(1):61-70. DOI: 10.2174/1574888x11666160714115926.
    [13]
    GolchinA,ShamsF,BasiriA,et al.Combination therapy of stem cell-derived exosomes and biomaterials in the wound healing[J].Stem Cell Rev Rep,2022,18(6):1892-1911.DOI: 10.1007/s12015-021-10309-5.
    [14]
    García-VarelaL, Vállez GarcíaD, AguiarP, et al. Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13):4307-4317. DOI: 10.1007/s00259-021-05411-2.
    [15]
    WickmanA. Best practices in engagement and research to practice[J]. J Agromedicine, 2021, 26(1):73-74. DOI: 10.1080/1059924X.2021.1849514.
    [16]
    GoreckaJ, KostiukV, FereydooniA, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing[J]. Stem Cell Res Ther, 2019, 10(1):87. DOI: 10.1186/s13287-019-1185-1.
    [17]
    Gerami-NainiB, SmithA, MaioneAG, et al. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative Sendai virus[J]. Cell Reprogram, 2016, 18(4):214-223. DOI: 10.1089/cell.2015.0087.
    [18]
    GurusamyN, AlsayariA, RajasinghS, et al. Adult stem cells for regenerative therapy[J]. Prog Mol Biol Transl Sci, 2018, 160:1-22. DOI: 10.1016/bs.pmbts.2018.07.009.
    [19]
    Guillamat-PratsR. The role of MSC in wound healing, scarring and regeneration[J]. Cells, 2021, 10(7):1729. DOI: 10.3390/cells10071729.
    [20]
    AkasakaY.The role of mesenchymal stromal cells in tissue repair and fibrosis[J].Adv Wound Care (New Rochelle),2022,11(11):561-574.DOI: 10.1089/wound.2021.0037.
    [21]
    LangerR, VacantiJ. Advances in tissue engineering[J]. J Pediatr Surg, 2016, 51(1):8-12. DOI: 10.1016/j.jpedsurg.2015.10.022.
    [22]
    KocanB, MaziarzA, TabarkiewiczJ, et al. Trophic activity and phenotype of adipose tissue-derived mesenchymal stem cells as a background of their regenerative potential[J]. Stem Cells Int, 2017, 2017:1653254. DOI: 10.1155/2017/1653254.
    [23]
    EncisoN, AvedilloL, FermínML, et al. Cutaneous wound healing: canine allogeneic ASC therapy[J]. Stem Cell Res Ther, 2020, 11(1):261. DOI: 10.1186/s13287-020-01778-5.
    [24]
    FuX,LiuG,HalimA,et al.Mesenchymal stem cell migration and tissue repair[J].Cells,2019,8(8):784.DOI: 10.3390/cells8080784.
    [25]
    CaoY, GangX, SunC, et al. Mesenchymal stem cells improve healing of diabetic foot ulcer[J]. J Diabetes Res, 2017, 2017:9328347. DOI: 10.1155/2017/9328347.
    [26]
    YanG, XuX, ZhangW, et al. Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries[J]. Nanotechnology, 2020, 31(20):205402. DOI: 10.1088/1361-6528/ab7047.
    [27]
    HuaJ, GongJ, MengH, et al. Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow[J]. Cell Biol Int, 2013,38(2):198-210. DOI: 10.1002/cbin.10188.
    [28]
    MahmoodR, ChoudheryMS, MehmoodA, et al. In vitro differentiation potential of human placenta derived cells into skin cells[J]. Stem Cells Int, 2015, 2015:841062. DOI: 10.1155/2015/841062.
    [29]
    UchidaK, OhkuboT, UtsunoF, et al. Modified Li7P3S11 glass-ceramic electrolyte and its characterization[J]. ACS Appl Mater Interfaces, 2021, 13(31):37071-37081. DOI: 10.1021/acsami.1c08507.
    [30]
    LiuL,YuY,HouY,et al.Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats[J].PLoS One,2014,9(2):e88348.DOI: 10.1371/journal.pone.0088348.
    [31]
    SharmaP, KumarA, DeyAD, et al. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: a promise to heal from within[J]. Life Sci, 2021, 268:118932. DOI: 10.1016/j.lfs.2020.118932.
    [32]
    TangX, QinH, GuX, et al. China's landscape in regenerative medicine[J]. Biomaterials, 2017, 124:78-94. DOI: 10.1016/j.biomaterials.2017.01.044.
    [33]
    MirzadeganE, GolshahiH, KazemnejadS. Current evidence on immunological and regenerative effects of menstrual blood stem cells seeded on scaffold consisting of amniotic membrane and silk fibroin in chronic wound[J]. Int Immunopharmacol, 2020, 85:106595. DOI: 10.1016/j.intimp.2020.106595.
    [34]
    Ali ZahidA,ChakrabortyA,ShamiyaY,et al.Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications[J].Mater Horiz,2022,9(7):1850-1865.DOI: 10.1039/d2mh00115b.
    [35]
    ArtheR, ArivuoliD, RaviV. Preparation and characterization of bioactive silk fibroin/paramylon blend films for chronic wound healing[J]. Int J Biol Macromol, 2020, 154:1324-1331. DOI: 10.1016/j.ijbiomac.2019.11.010.
    [36]
    ZhouW, ZhaoX, ShiX, et al. Constructing tissue-engineered dressing membranes with adipose-derived stem cells and acellular dermal matrix for diabetic wound healing: a comparative study of hypoxia- or normoxia-culture modes[J]. Stem Cells Int, 2022, 2022:2976185. DOI: 10.1155/2022/2976185.
    [37]
    GargRK, RennertRC, DuscherD, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds[J]. Stem Cells Transl Med, 2014, 3(9):1079-1089. DOI: 10.5966/sctm.2014-0007.
    [38]
    MofazzalJahromi MA, Sahandi ZangabadP, Moosavi BasriSM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing[J]. Adv Drug Deliv Rev, 2018, 123:33-64. DOI: 10.1016/j.addr.2017.08.001.
    [39]
    SalvoJ, SandovalC. Role of copper nanoparticles in wound healing for chronic wounds: literature review[J/OL]. Burns Trauma, 2022, 10:tkab047[2022-04-07]. https://pubmed.ncbi.nlm.nih.gov/35071652/.DOI: 10.1093/burnst/tkab047.
    [40]
    Blanco-FernandezB, CastañoO, Mateos-TimonedaMÁ, et al. Nanotechnology approaches in chronic wound healing[J]. Adv Wound Care (New Rochelle), 2021, 10(5):234-256. DOI: 10.1089/wound.2019.1094.
    [41]
    LiM, DuC, GuoN, et al. Composition design and medical application of liposomes[J]. Eur J Med Chem, 2019, 164:640-653. DOI: 10.1016/j.ejmech.2019.01.007.
    [42]
    ChenG. Journal of Materials Chemistry B and Biomaterials Science Editor's choice web collection: "Recent advances in microfluidics"[J]. J Mater Chem B, 2021, 9(17):3606-3607. DOI: 10.1039/d1tb90057a.
    [43]
    Correia CarreiraS, BegumR, PerrimanAW. 3D bioprinting: the emergence of programmable biodesign[J]. Adv Healthc Mater, 2020, 9(15):e1900554. DOI: 10.1002/adhm.201900554.
    [44]
    MoghaddamAS, KhonakdarHA, ArjmandM, et al. Review of bioprinting in regenerative medicine: naturally derived bioinks and stem cells[J]. ACS Appl Bio Mater, 2021, 4(5):4049-4070. DOI: 10.1021/acsabm.1c00219.
    [45]
    ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI: 10.1016/j.biomaterials.2020.120287.
    [46]
    HospodiukM, DeyM, SosnoskiD, et al. The bioink: a comprehensive review on bioprintable materials[J]. Biotechnol Adv, 2017, 35(2):217-239. DOI: 10.1016/j.biotechadv.2016.12.006.
    [47]
    DesanlisA, AlbouyM, RousselleP, et al. Validation of an implantable bioink using mechanical extraction of human skin cells: first steps to a 3D bioprinting treatment of deep second degree burn[J]. J Tissue Eng Regen Med, 2021, 15(1):37-48. DOI: 10.1002/term.3148.
    [48]
    ShafieeA,CavalcantiAS,SaidyNT,et al.Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy[J].Biomaterials,2021,268:120558. DOI: 10.1016/j.biomaterials.2020.120558.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (269) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return