Citation: | Zhang QR,Chen CY,Xu N,et al.Effect of P311 microspheres-loaded thermosensitive chitosan hydrogel on the wound healing of full-thickness skin defects in rats[J].Chin J Burns Wounds,2022,38(10):914-922.DOI: 10.3760/cma.j.cn501225-20220414-00135. |
[1] |
YuP,ZhongW.Hemostatic materials in wound care[J/OL].Burns Trauma,2021,9:tkab019[2022-09-23].https://pubmed.ncbi.nlm.nih.gov/34541007/.DOI: 10.1093/burnst/tkab019.
|
[2] |
VarkeyM,VisscherDO,van ZuijlenP,et al.Skin bioprinting: the future of burn wound reconstruction?[J/OL].Burns Trauma,2019,7:4[2022-09-23].https://pubmed.ncbi.nlm.nih.gov/30805375/. DOI: 10.1186/s41038-019-0142-7.
|
[3] |
WangS,ZhangX,QianW,et al.P311 deficiency leads to attenuated angiogenesis in cutaneous wound healing[J].Front Physiol,2017,8:1004.DOI: 10.3389/fphys.2017.01004.
|
[4] |
YaoZ,LiH,HeW,et al.P311 accelerates skin wound reepithelialization by promoting epidermal stem cell migration through rhoa and rac1 activation[J].Stem Cells Dev,2017,26(6):451-460.DOI: 10.1089/scd.2016.0249.
|
[5] |
LiH,YaoZ,HeW,et al.P311 induces the transdifferentiation of epidermal stem cells to myofibroblast-like cells by stimulating transforming growth factor β1 expression[J].Stem Cell Res Ther,2016,7(1):175.DOI: 10.1186/s13287-016-0421-1.
|
[6] |
TaylorGA,HudsonE,ResauJH,et al.Regulation of P311 expression by Met-hepatocyte growth factor/scatter factor and the ubiquitin/proteasome system[J].J Biol Chem,2000,275(6):4215-4219.DOI: 10.1074/jbc.275.6.4215.
|
[7] |
ZhouHY,JiangLJ,CaoPP,et al.Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications[J].Carbohydr Polym,2015,117:524-536.DOI: 10.1016/j.carbpol.2014.09.094.
|
[8] |
OldenkampHF,Vela RamirezJE,PeppasNA.Re-evaluating the importance of carbohydrates as regenerative biomaterials[J].Regen Biomater,2019,6(1):1-12.DOI: 10.1093/rb/rby023.
|
[9] |
HanF,DongY,SuZ,et al.Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material[J].Int J Pharm,2014,476(1/2):124-133.DOI: 10.1016/j.ijpharm.2014.09.036.
|
[10] |
SuY,ZhangB,SunR,et al.PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application[J].Drug Deliv,2021,28(1):1397-1418.DOI: 10.1080/10717544.2021.1938756.
|
[11] |
FrokjaerS,OtzenDE.Protein drug stability: a formulation challenge[J].Nat Rev Drug Discov,2005,4(4):298-306.DOI: 10.1038/nrd1695.
|
[12] |
MoellerEH,JorgensenL.Alternative routes of administration for systemic delivery of protein pharmaceuticals[J].Drug Discov Today Technol,2008,5(2/3):e89-94.DOI: 10.1016/j.ddtec.2008.11.005.
|
[13] |
AhmedTA,AlharbyYA,El-HelwAR,et al.Depot injectable atorvastatin biodegradable in situ gel: development, optimization, in vitro, and in vivo evaluation[J].Drug Des Devel Ther,2016,10:405-415.DOI: 10.2147/DDDT.S98078.
|
[14] |
周紫萱,姜耀男,肖仕初.原位成形可注射水凝胶特性及其促创面愈合作用研究进展[J].中华烧伤杂志,2021,37(1):82-85.DOI: 10.3760/cma.j.cn501120-20200428-00243.
|
[15] |
CheniteA,ChaputC,WangD,et al.Novel injectable neutral solutions of chitosan form biodegradable gels in situ[J].Biomaterials,2000,21(21):2155-2161.DOI: 10.1016/s0142-9612(00)00116-2.
|
[16] |
DengA,KangX,ZhangJ,et al.Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated[J].Mater Sci Eng C Mater Biol Appl,2017,78:1147-1154.DOI: 10.1016/j.msec.2017.04.109.
|
[17] |
KaranS,DebnathS,KuotsuK,et al.In-vitro and in-vivo evaluation of polymeric microsphere formulation for colon targeted delivery of 5-fluorouracil using biocompatible natural gum katira[J].Int J Biol Macromol,2020,158:922-936.DOI: 10.1016/j.ijbiomac.2020.04.129.
|
[18] |
ZhouX,HouC,ChangTL,et al.Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method[J].Colloids Surf B Biointerfaces,2020,187:110645.DOI: 10.1016/j.colsurfb.2019.110645.
|
[19] |
RacV,LevićS,BalančB,et al.PVA Cryogel as model hydrogel for iontophoretic transdermal drug delivery investigations. Comparison with PAA/PVA and PAA/PVP interpenetrating networks[J].Colloids Surf B Biointerfaces,2019,180:441-448.DOI: 10.1016/j.colsurfb.2019.05.017.
|
[20] |
StrehlC,GaberT,MauriziL,et al.Effects of PVA coated nanoparticles on human immune cells[J].Int J Nanomedicine,2015,10:3429-3445.DOI: 10.2147/IJN.S75936.
|
[21] |
阿拉腾珠拉,胡永飞.褐藻寡糖的制备方法及生物活性研究进展[J].生物工程学报,2022,38(1):104-118.DOI: 10.13345/j.cjb.210377.
|
[22] |
JadachB,ŚwietlikW,FroelichA.Sodium alginate as a pharmaceutical excipient: novel applications of a well-known polymer[J].J Pharm Sci,2022,111(5):1250-1261.DOI: 10.1016/j.xphs.2021.12.024.
|
[23] |
YaacobEN,GoethalsJ,BajekA,et al.Preparation and characterization of alginate microparticles containing a model protein for oral administration in gnotobiotic european sea bass (dicentrarchus labrax) larvae[J].Mar Biotechnol (NY),2017,19(4):391-400.DOI: 10.1007/s10126-017-9758-4.
|
[24] |
RameshbabuAP,BankotiK,DattaS,et al.Silk sponges ornamented with a placenta-derived extracellular matrix augment full-thickness cutaneous wound healing by stimulating neovascularization and cellular migration[J].ACS Appl Mater Interfaces,2018,10(20):16977-16991.DOI: 10.1021/acsami.7b19007.
|
[25] |
WangX,LinM,KangY.Engineering porous β-tricalcium phosphate (β-TCP) scaffolds with multiple channels to promote cell migration, proliferation, and angiogenesis[J].ACS Appl Mater Interfaces,2019,11(9):9223-9232.DOI: 10.1021/acsami.8b22041.
|
[26] |
路青青,吕国忠,吕强.具有促血管化能力的酸化丝蛋白海绵敷料的细胞相容性及该敷料对大鼠全层皮肤缺损创面愈合的影响[J].中华烧伤杂志,2021,37(1):25-33.DOI: 10.3760/cma.j.cn501120-20200925-00423.
|
[27] |
BarrientosS,BremH,StojadinovicO,et al.Clinical application of growth factors and cytokines in wound healing[J].Wound Repair Regen,2014,22(5):569-578.DOI: 10.1111/wrr.12205.
|
[28] |
ChengT, YueM, AslamMN, et al. Neuronal protein 3.1 deficiency leads to reduced cutaneous scar collagen deposition and tensile strength due to impaired transforming growth factor-β1 to -β3 translation[J]. Am J Pathol, 2017,187(2):292-303. DOI: 10.1016/j.ajpath.2016.10.004.
|