Citation: | Han CM,Zhang LP,Wu P.A brief discussion on precision nutrition support for severe burn patients from theory to practice[J].Chin J Burns Wounds,2022,38(8):701-706.DOI: 10.3760/cma.j.cn501225-20220517-00189. |
[1] |
PorterC, TompkinsRG, FinnertyCC, et al. The metabolic stress response to burn trauma: current understanding and therapies[J]. Lancet, 2016,388(10052):1417-1426. DOI: 10.1016/S0140-6736(16)31469-6.
|
[2] |
PorterC, HerndonDN, BhattaraiN, et al. Severe burn injury induces thermogenically functional mitochondria in murine white adipose tissue[J]. Shock, 2015,44(3):258-264. DOI: 10.1097/SHK.0000000000000410.
|
[3] |
HartDW, WolfSE, MlcakR, et al. Persistence of muscle catabolism after severe burn[J]. Surgery, 2000,128(2):312-319. DOI: 10.1067/msy.2000.108059.
|
[4] |
PorterC, HerndonDN, BørsheimE, et al. Long-term skeletal muscle mitochondrial dysfunction is associated with hypermetabolism in severely burned children[J]. J Burn Care Res, 2016,37(1):53-63. DOI: 10.1097/BCR.0000000000000308.
|
[5] |
DemlingRH, SeigneP. Metabolic management of patients with severe burns[J]. World J Surg, 2000,24(6):673-680. DOI: 10.1007/s002689910109.
|
[6] |
XiaoW, MindrinosMN, SeokJ, et al. A genomic storm in critically injured humans[J]. J Exp Med, 2011,208(13):2581-2590. DOI: 10.1084/jem.20111354.
|
[7] |
SeokJ, WarrenHS, CuencaAG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases[J]. Proc Natl Acad Sci U S A, 2013,110(9):3507-3512. DOI: 10.1073/pnas.1222878110.
|
[8] |
YuYM, TompkinsRG, RyanCM, et al. The metabolic basis of the increase of the increase in energy expenditure in severely burned patients[J]. JPEN J Parenter Enteral Nutr, 1999,23(3):160-168. DOI: 10.1177/0148607199023003160.
|
[9] |
SidossisLS, PorterC, SarafMK, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress[J]. Cell Metab, 2015,22(2):219-227. DOI: 10.1016/j.cmet.2015.06.022.
|
[10] |
TzikaAA, MintzopoulosD, MindrinosM, et al. Microarray analysis suggests that burn injury results in mitochondrial dysfunction in human skeletal muscle[J]. Int J Mol Med, 2009,24(3):387-392. DOI: 10.3892/ijmm_00000244.
|
[11] |
DickersonRN, GervasioJM, RileyML, et al. Accuracy of predictive methods to estimate resting energy expenditure of thermally-injured patients[J]. JPEN J Parenter Enteral Nutr, 2002,26(1):17-29. DOI: 10.1177/014860710202600117.
|
[12] |
RousseauAF, LosserMR, IchaiC, et al. ESPEN endorsed recommendations: nutritional therapy in major burns[J]. Clin Nutr, 2013,32(4):497-502. DOI: 10.1016/j.clnu.2013.02.012.
|
[13] |
LeungJ, RidleyEJ, ClelandH, et al. Predictive energy equations are inaccurate for determining energy expenditure in adult burn injury: a retrospective observational study[J]. ANZ J Surg, 2019,89(5):578-583. DOI: 10.1111/ans.15119.
|
[14] |
DelsoglioM, AchamrahN, BergerMM, et al. Indirect calorimetry in clinical practice[J]. J Clin Med, 2019,8(9):1387.DOI: 10.3390/jcm8091387.
|
[15] |
PengX, WangKF, ZhangY, et al. Establishment and assessment of new formulas for energy consumption estimation in adult burn patients[J]. PLoS One, 2014,9(10):e110409. DOI: 10.1371/journal.pone.0110409.
|
[16] |
GuoF, ZhouH, WuJ, et al. Prospective study on energy expenditure in patients with severe burns[J]. JPEN J Parenter Enteral Nutr, 2021,45(1):146-151. DOI: 10.1002/jpen.1819.
|
[17] |
JeonJ, KymD, ChoYS, et al. Reliability of resting energy expenditure in major burns: comparison between measured and predictive equations[J]. Clin Nutr, 2019,38(6):2763-2769. DOI: 10.1016/j.clnu.2018.12.003.
|
[18] |
ChanLC, LeeMS, OuYN, et al. Energy requirements for ICU burn patients in whom the total body surface area affected exceeds 50 percent: a practical equation[J]. Asia Pac J Clin Nutr, 2018,27(6):1182-1189. DOI: 10.6133/apjcn.201811_27(6).0003.
|
[19] |
Caldis-CoutrisN, GawaziukJP, MagnussonS, et al. Malnutrition in burns: a prospective, single-center study[J]. J Burn Care Res, 2022,43(3):592-595. DOI: 10.1093/jbcr/irab186.
|
[20] |
Alfonso OrtizL, JiangX, TurgeonAF, et al. Validation of the modified NUTrition Risk Score (mNUTRIC) in mechanically ventilated, severe burn patients: a prospective multinational cohort study[J]. Burns, 2021,47(8):1739-1747. DOI: 10.1016/j.burns.2021.05.010.
|
[21] |
靳云云, 郭松雪, 有传刚, 等. 营养风险筛查2002在中国的应用概况[J].中华临床营养杂志,2015,23(4):255-258. DOI: 10.3760/cma.j.issn.1674-635X.2015.04.013.
|
[22] |
娄家祺, 李琦, 崔庆伟, 等 . 肠内免疫营养支持治疗对具有营养风险的成年烧伤患者的疗效的前瞻性随机对照研究[J]. 中华烧伤与创面修复杂志, 2022, 38(8): 722-734. DOI: 10.3760/cma.j.cn501225-20220327-00094.
|
[23] |
ClarkA, ImranJ, MadniT, et al. Nutrition and metabolism in burn patients[J/OL]. Burns Trauma, 2017,5:11[2022-05-17]. https://pubmed.ncbi.nlm.nih.gov/28428966/. DOI: 10.1186/s41038-017-0076-x.
|
[24] |
CaveMC, HurtRT, FrazierTH, et al. Obesity, inflammation, and the potential application of pharmaconutrition[J]. Nutr Clin Pract, 2008,23(1):16-34. DOI: 10.1177/011542650802300116.
|
[25] |
GoutosI. Nutritional care of the obese adult burn patient: a U.K. Survey and literature review[J]. J Burn Care Res, 2014,35(3):199-211. DOI: 10.1097/BCR.0000000000000032.
|
[26] |
HamptonV, HamptonT, DheansaB, et al. Evaluation of high protein intake to improve clinical outcome and nutritional status for patients with burns: a systematic review[J]. Burns, 2021,47(8):1714-1729. DOI: 10.1016/j.burns.2021.02.028.
|
[27] |
ShieldsBA, VanFossonCA, PruskowskiKA, et al. High-carbohydrate vs high-fat nutrition for burn patients[J]. Nutr Clin Pract, 2019,34(5):688-694. DOI: 10.1002/ncp.10396.
|
[28] |
ŻwierełłoW, StyburskiD, MaruszewskaA, et al. Bioelements in the treatment of burn injuries-the complex review of metabolism and supplementation (copper, selenium, zinc, iron, manganese, chromium and magnesium)[J]. J Trace Elem Med Biol, 2020,62:126616. DOI: 10.1016/j.jtemb.2020.126616.
|
[29] |
JafariP, ThomasA, HaselbachD, et al. Trace element intakes should be revisited in burn nutrition protocols: a cohort study[J]. Clin Nutr, 2018,37(3):958-964. DOI: 10.1016/j.clnu.2017.03.028.
|
[30] |
KreymannKG, BergerMM, DeutzNE, et al. ESPEN guidelines on enteral nutrition: intensive care[J]. Clin Nutr, 2006,25(2):210-223. DOI: 10.1016/j.clnu.2006.01.021.
|
[31] |
YanH, PengX, HuangY, et al. Effects of early enteral arginine supplementation on resuscitation of severe burn patients[J]. Burns, 2007,33(2):179-184. DOI: 10.1016/j.burns.2006.06.012.
|
[32] |
TihistaS, EchavarríaE. Effect of omega 3 polyunsaturated fatty acids derived from fish oil in major burn patients: a prospective randomized controlled pilot trial[J]. Clin Nutr, 2018,37(1):107-112. DOI: 10.1016/j.clnu.2017.01.002.
|
[33] |
LiD, WahlqvistML, SinclairAJ. Advances in n-3 polyunsaturated fatty acid nutrition[J]. Asia Pac J Clin Nutr, 2019,28(1):1-5. DOI: 10.6133/apjcn.201903_28(1).0001.
|
[34] |
CarrAC, MagginiS. Vitamin C and immune function[J]. Nutrients, 2017, 9(11):1211.DOI: 10.3390/nu9111211.
|
[35] |
MaaresM, HaaseH. Zinc and immunity: an essential interrelation[J]. Arch Biochem Biophys, 2016,611:58-65. DOI: 10.1016/j.abb.2016.03.022.
|
[36] |
LindenMA, TeixeiraT, FreitasR, et al. Arginine and glutamine supplementation on transthyretin levels in severely burned patients: a systematic review[J]. Nutrition, 2022,101:111657. DOI: 10.1016/j.nut.2022.111657.
|
[37] |
BergerMM, BinzPA, RouxC, et al. Exudative glutamine losses contribute to high needs after burn injury[J]. JPEN J Parenter Enteral Nutr, 2022,46(4):782-788. DOI: 10.1002/jpen.2227.
|
[38] |
BerrySE, ValdesAM, DrewDA, et al. Human postprandial responses to food and potential for precision nutrition[J]. Nat Med, 2020,26(6):964-973. DOI: 10.1038/s41591-020-0934-0.
|
[39] |
BreederveldRS, TuinebreijerWE. Recombinant human growth hormone for treating burns and donor sites[J]. Cochrane Database Syst Rev, 2014,2014(9):CD008990. DOI: 10.1002/14651858.CD008990.pub3.
|
[40] |
GarrelDR, RaziM, LarivièreF, et al. Improved clinical status and length of care with low-fat nutrition support in burn patients[J]. JPEN J Parenter Enteral Nutr, 1995,19(6):482-491. DOI: 10.1177/0148607195019006482.
|
[41] |
ChourdakisM, BourasE, ShieldsBA, et al. Nutritional therapy among burn injured patients in the critical care setting: an international multicenter observational study on "best achievable" practices[J]. Clin Nutr, 2020,39(12):3813-3820. DOI: 10.1016/j.clnu.2020.04.023.
|
[42] |
de RoosB. Personalised nutrition: ready for practice?[J]. Proc Nutr Soc, 2013,72(1):48-52. DOI: 10.1017/S0029665112002844.
|
[43] |
QiL. Nutrition for precision health: the time is now[J]. Obesity (Silver Spring), 2022,30(7):1335-1344. DOI: 10.1002/oby.23448.
|
[44] |
ChuAY, WorkalemahuT, PaynterNP, et al. Novel locus including FGF21 is associated with dietary macronutrient intake[J]. Hum Mol Genet, 2013,22(9):1895-1902. DOI: 10.1093/hmg/ddt032.
|
[45] |
MoriMA, LudwigRG, Garcia-MartinR, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019,30(4):656-673. DOI: 10.1016/j.cmet.2019.07.011.
|
[46] |
HeskethJ. Personalised nutrition: how far has nutrigenomics progressed?[J]. Eur J Clin Nutr, 2013,67(5):430-435. DOI: 10.1038/ejcn.2012.145.
|
[47] |
肖桂珍, 李俊, 苏磊. 危重患者的精准营养[J].中华危重病急救医学,2017,29(11):1052-1056. DOI: 10.3760/cma.j.issn.2095-4352.2017.11.020.
|