Volume 38 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Ding ZZ,Lyu Q.Research advances on the application of silk fibroin biomaterials in wound repair[J].Chin J Burns Wounds,2022,38(10):973-977.DOI: 10.3760/cma.j.cn501225-20220602-00212.
Citation: Ding ZZ,Lyu Q.Research advances on the application of silk fibroin biomaterials in wound repair[J].Chin J Burns Wounds,2022,38(10):973-977.DOI: 10.3760/cma.j.cn501225-20220602-00212.

Research advances on the application of silk fibroin biomaterials in wound repair

doi: 10.3760/cma.j.cn501225-20220602-00212
Funds:

National Key Research and Development Program of China 2016YFE0204400

More Information
  • Corresponding author: Lyu Qiang, Email: lvqiang78@suda.edu.cn
  • Received Date: 2022-06-02
    Available Online: 2022-10-24
  • Silk fibroin, a natural fibrin, is a suitable matrix biomaterial for wound repair due to its unique properties such as good biocompatibility, tunable biodegradation and mechanical properties, low host inflammatory response, low cost, ease of fabrication, etc. Silk fibroin can be used alone or in combination with other materials to construct various dressings including scaffolds, hydrogels, films, smart mats, and microneedles, which can meet the needs of different wound repair and regulate the wound repair process. Thus, the application research of silk fibroin in skin tissue engineering has increased dramatically. Compared with other natural materials, silk fibroin promotes tissue regeneration and wound repair by improving cell proliferation, migration, and differentiation behavior at different stages, showing unique advantages in different dimensions. Based on the development of silk fibroin wound repair materials in the recent years, this review focuses on the mechanism and application prospect of silk fibroin and its composite materials in wound repair.

     

  • loading
  • [1]
    魏亚婷,吴军. 创面修复中的皮肤组织再生研究进展[J]. 中华烧伤杂志,2021,37(7): 670-674. DOI: 10.3760/cma.j.cn501120-20200604-00296.
    [2]
    DingXT, TangQH, XuZY, et al. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice[J/OL]. Burns Trauma, 2022, 10: tkac014[2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/35611318/. DOI: 10.1093/burnst/tkac014.
    [3]
    ZhangM, ZhaoX. Alginate hydrogel dressings for advanced wound management[J]. Int J Biol Macromol, 2020, 162: 1414-1428. DOI: 10.1016/j.ijbiomac.2020.07.311.
    [4]
    MbeseZ,AlvenS,AderibigbeBA.Collagen-based nanofibers for skin regeneration and wound dressing applications[J].Polymers (Basel),2021,13(24):4368.DOI: 10.3390/polym13244368.
    [5]
    MoeiniA, PedramP, MakvandiP, et al. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review[J]. Carbohydr Polym, 2020, 233: 115839. DOI: 10.1016/j.carbpol.2020.115839.
    [6]
    GomesS, LeonorIB, ManoJF, et al. Natural and genetically engineered proteins for tissue engineering[J]. Prog Polym Sci, 2012, 37(1): 1-17. DOI: 10.1016/j.progpolymsci.2011.07.003.
    [7]
    SunWZ, GregoryDA, TomehMA, et al. Silk fibroin as a functional biomaterial for tissue engineering[J].Int J Mol Sci,2021,22(3):1499.DOI: 10.3390/ijms22031499.
    [8]
    HollandC,NumataK,Rnjak-KovacinaJ,et al.The biomedical use of silk: past, present, future[J].Adv Healthc Mater,2019,8(1):e1800465.DOI: 10.1002/adhm.201800465.
    [9]
    FanTY, DanielsR. Preparation and characterization of electrospun polylactic acid (PLA) fiber loaded with birch bark triterpene extract for wound dressing[J]. AAPS PharmSciTech, 2021, 22(6): 205. DOI: 10.1208/s12249-021-02081-z.
    [10]
    LiuJH, YanLW, YangW, et al. Controlled-release neurotensin-loaded silk fibroin dressings improve wound healing in diabetic rat model[J]. Bioact Mater, 2019, 4: 151-159. DOI: 10.1016/j.bioactmat.2019.03.001.
    [11]
    YinCJ, HanXS, LuQY, et al. Rhein incorporated silk fibroin hydrogels with antibacterial and anti-inflammatory efficacy to promote healing of bacteria-infected burn wounds[J]. Int J Biol Macromol, 2022, 201: 14-19. DOI: 10.1016/j.ijbiomac.2021.12.156.
    [12]
    SafonovaL, BobrovaM, EfimovA, et al. Silk fibroin/spidroin electrospun scaffolds for full-thickness skin wound healing in rats[J]. Pharmaceutics, 2021, 13(10): 1704. DOI: 10.3390/pharmaceutics13101704.
    [13]
    DingZZ, ZhouML, ZhouZY, et al. Injectable silk nanofiber hydrogels for sustained release of small-molecule drugs and vascularization[J]. ACS Biomater Sci Eng, 2019, 5(8): 4077-4088. DOI: 10.1021/acsbiomaterials.9b00621.
    [14]
    LiuJ, HuangR, LiG, et al. Generation of nano-pores in silk fibroin films using silk nanoparticles for full-thickness wound healing[J]. Biomacromolecules, 2021, 22 (2): 546-556. DOI: 10.1021/acs.biomac.0c01411.
    [15]
    GaoBB, GuoMZ, LyuK, et al. Intelligent silk fibroin based microneedle dressing (i-SMD)[J]. Adv Funct Mater, 2021, 31(3): 2006839. DOI: 10.1002/adfm.202006839.
    [16]
    LuGZ, DingZZ, WeiYY, et al. Anisotropic biomimetic silk scaffolds for improved cell migration and healing of skin wounds[J]. ACS Appl Mater Interfaces, 2018, 10(51): 44314-44323. DOI: 10.1021/acsami.8b18626.
    [17]
    HanHY, NingHY, LiuSS, et al. Silk biomaterials with vascularization capacity[J]. Adv Funct Mater, 2016, 26(3): 421-436. DOI: 10.1002/adfm.201504160.
    [18]
    FarokhiM, MottaghitalabF, FatahiY, et al. Overview of silk fibroin use in wound dressings[J]. Trends Biotechnol, 2018, 36(9): 907-922. DOI: 10.1016/j.tibtech.2018.04.004.
    [19]
    ParkYR,SultanMT,ParkHJ,et al.NF-κB signaling is key in the wound healing processes of silk fibroin[J].Acta Biomater,2018,67:183-195.DOI: 10.1016/j.actbio.2017.12.006.
    [20]
    ZhaoX, WuH, GuoBL, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing[J]. Biomaterials, 2017, 122: 34-47. DOI: 10.1016/j.biomaterials.2017.01.011.
    [21]
    LuXH, DingZZ, XuFR, et al. Subtle regulation of scaffold stiffness for the optimized control of cell behavior [J]. ACS Appl Bio Mater, 2019, 2(7): 3108-3119. DOI: 10.1021/acsabm.9b00445.
    [22]
    SelvarajS, FathimaNN. Fenugreek incorporated silk fibroin nanofibers-a potential antioxidant scaffold for enhanced wound healing[J]. ACS Appl Mater Interfaces, 2017, 9(7): 5916-5926. DOI: 10.1021/acsami.6b16306.
    [23]
    ChenMM, TianJ, LiuY, et al. Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing[J]. Chem Eng J, 2019, 373: 413-424. DOI: 10.1016/j.cej.2019.05.043.
    [24]
    DingZZ, ZhangYH, GuoP, et al. Injectable desferrioxamine-laden silk nanofiber hydrogels for accelerating diabetic wound healing[J]. ACS Biomater Sci Eng, 2021, 7(3): 1147-1158. DOI: 10.1021/acsbiomaterials.0c01502.
    [25]
    TianMP, ZhangAD, YaoYX, et al. Mussel-inspired adhesive and polypeptide-based antibacterial thermo-sensitive hydroxybutyl chitosan hydrogel as BMSCs 3D culture matrix for wound healing[J]. Carbohydr Polym, 2021, 261: 117878. DOI: 10.1016/j.carbpol.2021.117878.
    [26]
    AyukSM, AbrahamseH, HoureldNN. The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation[J]. J Diabetes Res, 2016, 2016:2897656. DOI: 10.1155/2016/2897656.
    [27]
    ZhengX, DingZZ, ChengWN, et al. Microskin-inspired injectable MSC-laden hydrogels for scarless wound healing with hair follicles[J]. Adv Healthc Mater, 2020, 9(10): e2000041. DOI: 10.1002/adhm.202000041.
    [28]
    QianZY, WangHP, BaiYT, et al. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release[J]. ACS Appl Mater Interfaces, 2020, 12(50): 55659-55674. DOI: 10.1021/acsami.0c17142.
    [29]
    ZhangW, ChenLK, ChenJL, et al. Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial[J]. Adv Healthc Mater, 2017, 6(10): 1700121. DOI: 10.1002/adhm.201700121.
    [30]
    ZhuYN, ZhangJM, SongJY, et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment[J]. Adv Funct Mater, 2019, 30(6): 1905493. DOI: 10.1002/adfm.201905493.
    [31]
    ChanmugamA, LangemoD, ThomasonK, et al. Relative temperature maximum in wound infection and inflammation as compared with a control subject using long-wave infrared thermography[J]. Adv Skin Wound Care, 2017, 30(9): 406-414. DOI: 10.1097/01.ASW.0000522161.13573.62.
    [32]
    KhalidA, BaiDB, AbrahamAN, et al. Electrospun nanodiamond-silk fibroin membranes: a multifunctional platform for biosensing and wound-healing applications[J]. ACS Appl Mater Interfaces, 2020, 12(43): 48408-48419. DOI: 10.1021/acsami.0c15612.
    [33]
    JuJ, HuN, CairnsDM, et al. Photo-cross-linkable, insulating silk fibroin for bioelectronics with enhanced cell affinity[J]. Proc Natl Acad Sci U S A, 2020, 117(27): 15482-15489. DOI: 10.1073/pnas.2003696117.
    [34]
    LiangYP, ZhaoX, HuTL, et al. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin[J]. J Colloid Interface Sci, 2019, 556: 514-528. DOI: 10.1016/j.jcis.2019.08.083.
    [35]
    JiaZR, GongJL, ZengY, et al. Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes[J]. Adv Funct Mater, 2021, 31(19): 2010461. DOI: 10.1002/adfm.202010461.
    [36]
    ZhuJJ, DongLY, DuHY, et al. 5-Aminolevulinic acid-loaded hyaluronic acid dissolving microneedles for effective photodynamic therapy of superficial tumors with enhanced long-term stability[J]. Adv Healthc Mater, 2019, 8(22): e1900896. DOI: 10.1002/adhm.201900896.
    [37]
    HeZZ, ElbazA, GaoBB, et al. Disposable morpho menelaus based flexible microfluidic and electronic sensor for the diagnosis of neurodegenerative disease[J]. Adv Healthc Mater, 2018, 7(5): 1701306. DOI: 10.1002/adhm.201701306.
    [38]
    ZhangQ, ShiL, HeH, et al. Down-regulating scar formation by microneedles directly via a mechanical communication pathway[J]. ACS Nano, 2022, 16(7):10163-10178.DOI: 10.1021/acsnano.1c11016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (524) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return