Citation: | Chen LL,Yu SX,Ma J,et al.Research progress of biomaterials in promoting wound vascularization[J].Chin J Burns Wounds,2023,39(4):381-385.DOI: 10.3760/cma.j.cn501225-20220626-00261. |
[1] |
MiricescuD,BadoiuSC,ⅡStanescu-Spinu,et al.Growth factors, reactive oxygen species, and metformin-promoters of the wound healing process in burns?[J].Int J Mol Sci,2021,22(17):9512. DOI: 10.3390/ijms22179512.
|
[2] |
WuM,LuZ,WuK,et al.Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing[J].J Mater Chem B,2021,9(35):7063-7075.DOI: 10.1039/d1tb00847a.
|
[3] |
ShahinH,ElmasryM,SteinvallI,et al.Vascularization is the next challenge for skin tissue engineering as a solution for burn management[J/OL].Burns Trauma,2020,8:tkaa022[2022-06-26].https://pubmed.ncbi.nlm.nih.gov/32766342/.DOI: 10.1093/burnst/tkaa022.
|
[4] |
Masson-MeyersDS,TayebiL.Vascularization strategies in tissue engineering approaches for soft tissue repair[J].J Tissue Eng Regen Med,2021,15(9):747-762.DOI: 10.1002/term.3225.
|
[5] |
WangY,FanY,LiuH.Macrophage polarization in response to biomaterials for vascularization[J].Ann Biomed Eng,2021,49(9):1992-2005.DOI: 10.1007/s10439-021-02832-w.
|
[6] |
OmorphosNP,GaoC,TanSS,et al.Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues[J].Mol Biol Rep,2021,48(1):941-950.DOI: 10.1007/s11033-020-06108-9.
|
[7] |
MarzianoC,GenetG,HirschiKK.Vascular endothelial cell specification in health and disease[J].Angiogenesis,2021,24(2):213-236.DOI: 10.1007/s10456-021-09785-7.
|
[8] |
GonçalvesRC,BanfiA,OliveiraMB,et al.Strategies for re-vascularization and promotion of angiogenesis in trauma and disease[J].Biomaterials,2021,269:120628.DOI: 10.1016/j.biomaterials.2020.120628.
|
[9] |
ChenL,LiZ,ZhengY,et al.3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization[J].Bioact Mater,2022,10:236-246.DOI: 10.1016/j.bioactmat.2021.09.008.
|
[10] |
MinorAJ,CoulombeK.Engineering a collagen matrix for cell-instructive regenerative angiogenesis[J].J Biomed Mater Res B Appl Biomater,2020,108(6):2407-2416.DOI: 10.1002/jbm.b.34573.
|
[11] |
NiuY,StadlerFJ,FangJ,et al.Hyaluronic acid-functionalized poly-lactic acid (PLA) microfibers regulate vascular endothelial cell proliferation and phenotypic shape expression[J].Colloids Surf B Biointerfaces,2021,206:111970.DOI: 10.1016/j.colsurfb.2021.111970.
|
[12] |
GuoP,DuP,ZhaoP,et al.Regulating the mechanics of silk fibroin scaffolds promotes wound vascularization[J].Biochem Biophys Res Commun,2021,574:78-84.DOI: 10.1016/j.bbrc.2021.08.026.
|
[13] |
CzerwinskiM,SpenceJR.Hacking the matrix[J].Cell Stem Cell,2017,20(1):9-10.DOI: 10.1016/j.stem.2016.12.010.
|
[14] |
RahimnejadM,Nasrollahi BoroujeniN,JahangiriS,et al.Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering[J].Nanomicro Lett,2021,13(1):182.DOI: 10.1007/s40820-021-00697-1.
|
[15] |
YuR,ZhangH,GuoB.Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering[J].Nanomicro Lett,2021,14(1):1.DOI: 10.1007/s40820-021-00751-y.
|
[16] |
谭荣伟,刘曦,陈滢滢,等.不同三维多孔结构对人工真皮血管化速率影响的实验研究[J].中华烧伤杂志,2021,37(10):959-969.DOI: 10.3760/cma.j.cn501120-20200715-00347.
|
[17] |
MehdizadehH,SumoS,BayrakES,et al.Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds[J].Biomaterials,2013,34(12):2875-2887.DOI: 10.1016/j.biomaterials.2012.12.047.
|
[18] |
HernandezJL,WoodrowKA.Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility[J].Adv Healthc Mater,2022,11(9):e2102087.DOI: 10.1002/adhm.202102087.
|
[19] |
GongT,ZhaoK,LiuX,et al.A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization[J].Small,2016,12(41):5769-5778.DOI: 10.1002/smll.201601503.
|
[20] |
LiJ,ZhangT,PanM,et al.Nanofiber/hydrogel core-shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing[J].J Nanobiotechnology,2022,20(1):28.DOI: 10.1186/s12951-021-01208-5.
|
[21] |
LiJ,LiuX,TaoW,et al.Micropatterned composite membrane guides oriented cell growth and vascularization for accelerating wound healing[J].Regen Biomater,2023,10:rbac108.DOI: 10.1093/rb/rbac108.
|
[22] |
KasetsirikuS,KetpunD,ChuahYJ,et al.Surface creasing-induced micropatterned gelma using heating-hydration fabrication for effective vascularization[J].Tissue Eng Regen Med,2021,18(5):759-773.DOI: 10.1007/s13770-021-00345-0.
|
[23] |
GaoJ,YuX,WangX,et al.Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine[J].Engineering,2022,13(6):31-45. DOI: 10.1016/j.eng.2021.11.025.
|
[24] |
WangY,KankalaRK,OuC,et al.Advances in hydrogel-based vascularized tissues for tissue repair and drug screening[J].Bioact Mater,2022,9:198-220.DOI: 10.1016/j.bioactmat.2021.07.005.
|
[25] |
DongL,YangY,LiuZ.3D printing of biomimetic vasculature for tissue regeneration[J]. Materials Horizons,2019,6(6):1197-1206. DOI: 10.1039/C9MH00174C.
|
[26] |
FengC,ZhangW,DengC,et al.3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration[J].Adv Sci (Weinh),2017,4(12):1700401.DOI: 10.1002/advs.201700401.
|
[27] |
SuH,LiQ,LiD,et al.A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels[J].Mater Horiz,2022,9(9):2393-2407.DOI: 10.1039/d2mh00314g.
|
[28] |
XiaP,LuoY.Vascularization in tissue engineering: the architecture cues of pores in scaffolds[J].J Biomed Mater Res B Appl Biomater,2022,110(5):1206-1214.DOI: 10.1002/jbm.b.34979.
|
[29] |
JoshiA,ChoudhuryS,GugulothuSB,et al.Strategies to promote vascularization in 3D printed tissue scaffolds: trends and challenges[J].Biomacromolecules,2022,23(7):2730-2751.DOI: 10.1021/acs.biomac.2c00423.
|
[30] |
YangQ,PengJ,XiaoH,et al.Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering[J].Carbohydr Polym,2022,278:118952.DOI: 10.1016/j.carbpol.2021.118952.
|
[31] |
JungK,CorriganN,WongE,et al.Bioactive synthetic polymers[J].Adv Mater,2022,34(2):e2105063.DOI: 10.1002/adma.202105063.
|
[32] |
AliabouzarM,LeyA,MeursS,et al.Micropatterning of acoustic droplet vaporization in acoustically-responsive scaffolds using extrusion-based bioprinting[J].Bioprinting,2022,25:e00188.DOI: 10.1016/j.bprint.2021.e00188.
|
[33] |
YanezM,RinconJ,DonesA,et al.In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds[J].Tissue Eng Part A,2015,21(1/2):224-233.DOI: 10.1089/ten.TEA.2013.0561.
|
[34] |
KhannaA,AyanB,UndiehAA,et al.Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration[J].J Mol Cell Cardiol,2022,169:13-27.DOI: 10.1016/j.yjmcc.2022.04.017.
|
[35] |
LiC,HanX,MaZ,et al.Engineered customizable microvessels for progressive vascularization in large regenerative implants[J].Adv Healthc Mater,2022,11(4):e2101836.DOI: 10.1002/adhm.202101836.
|
[36] |
LuoY, ZhangT, LinX.3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization[J]. Chemical Engineering Journal,2022, 430:1385-8947. DOI: 10.1016/j.cej.2021.132926.
|
[37] |
ArakawaC,GunnarssonC,HowardC,et al.Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries[J].Sci Adv,2020,6(3):eaay7243.DOI: 10.1126/sciadv.aay7243.
|
[38] |
ZarubovaJ,Hasani-SadrabadiMM,BacakovaL,et al.Nano-in-micro dual delivery platform for chronic wound healing applications[J].Micromachines (Basel),2020,11(2):158.DOI: 10.3390/mi11020158.
|
[39] |
XieZ,ParasCB,WengH,et al.Dual growth factor releasing multi-functional nanofibers for wound healing[J].Acta Biomater,2013,9(12):9351-9359.DOI: 10.1016/j.actbio.2013.07.030.
|
[40] |
MooreMJ,TanRP,YangN,et al.Bioengineering artificial blood vessels from natural materials[J].Trends Biotechnol,2022,40(6):693-707.DOI: 10.1016/j.tibtech.2021.11.003.
|
[41] |
WangC,ChuC,ZhaoX,et al.The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way[J].Bioact Mater,2022,11:206-217.DOI: 10.1016/j.bioactmat.2021.09.022.
|
[42] |
QianS,WangJ,LiuZ,et al.Secretory fluid-aggregated Janus electrospun short fiber scaffold for wound healing[J].Small,2022,18(36):e2200799.DOI: 10.1002/smll.202200799.
|