Volume 38 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Peng X,Sun Y.Metabolic issues and nutritional strategies in burn wound repair[J].Chin J Burns Wounds,2022,38(8):707-713.DOI: 10.3760/cma.j.cn501225-20220708-00288.
Citation: Peng X,Sun Y.Metabolic issues and nutritional strategies in burn wound repair[J].Chin J Burns Wounds,2022,38(8):707-713.DOI: 10.3760/cma.j.cn501225-20220708-00288.

Metabolic issues and nutritional strategies in burn wound repair

doi: 10.3760/cma.j.cn501225-20220708-00288
Funds:

General Program of National Natural Science Foundation of China 82172202

Innovative Leading Talents Project of Chongqing cstc2022ycjh-bgzxm0148

More Information
  • Corresponding author: Peng Xi, Email: pxlrmm@163.com
  • Received Date: 2022-07-08
  • Wound is the most fundamental issue of burn injury, and its repair depends not only on effective wound treatment, but also on the good nutritional status of burned patients. Nutrition support is an important means to improve the nutritional status of patients and promote wound healing, and how to make it match the metabolism of burn wounds is a difficult task of nutrition therapy. In this paper, we analyzed the metabolic characteristics of different stages in burn wound healing, focused on the metabolic characteristics of glucose, protein, and glutamine in these stages, and proposed a nutritional strategy that is compatible with wound healing in order to maximize the role of nutrition therapy in wound repair.

     

  • loading
  • [1]
    许伟石, 刘琰, 乐嘉芬. 烧伤创面修复[M].2版.武汉:湖北科学技术出版社, 2013: 36-66.
    [2]
    AbazariM, GhaffariA, RashidzadehH, et al. A systematic review on classification, identification, and healing process of burn wound healing[J]. Int J Low Extrem Wounds, 2022, 21(1): 18-30. DOI: 10.1177/1534734620924857.
    [3]
    杨宗城. 烧伤治疗学[M].3版.北京: 人民卫生出版社, 2006: 180-211.
    [4]
    ClarkA, ImranJ, MadniT, et al. Nutrition and metabolism in burn patients[J/OL]. Burns Trauma, 2017,5:11[2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/28428966/. DOI: 10.1186/s41038-017-0076-x.
    [5]
    YarmushML, GolbergA. Bioengineering in wound healing: a systems approach[M]. New Jersey: World Scientific, 2017: 135-168.
    [6]
    Arribas-LópezE, ZandN, OjoO, et al. The effect of amino acids on wound healing: a systematic review and meta-analysis on arginine and glutamine[J]. Nutrients, 2021, 13: 2498. DOI: 10.3390/nu13082498.
    [7]
    ČomaM, FröhlichováL, UrbanL, et al. Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (inflammation, proliferation and maturation)[J]. Int J Mol Sci, 2021, 22(2):897.DOI: 10.3390/ijms22020897.
    [8]
    彭曦. 重症烧伤患者的代谢分期及营养治疗策略[J].中华烧伤杂志,2021,37(9):805-810. DOI: 10.3760/cma.j.cn501120-20210802-00264.
    [9]
    VinaikR, BarayanD, AugerC, et al. Regulation of glycolysis and the Warburg effect in wound healing[J]. JCI Insight, 2020, 5(17):e138949. DOI: 10.1172/jci.insight.138949.
    [10]
    LiB, TangH, BianX, et al. Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions[J/OL]. Burns Trauma, 2021,9:tkab029[2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/34604395/. DOI: 10.1093/burnst/tkab029.
    [11]
    WangCG, LouYT, TongMJ, et al. Asperosaponin Ⅵ promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling[J]. Acta Pharmacol Sin, 2018,39(3):393-404. DOI: 10.1038/aps.2017.161.
    [12]
    RussoTA, BanuthA, NaderHB, et al. Altered shear stress on endothelial cells leads to remodeling of extracellular matrix and induction of angiogenesis[J]. PLoS One, 2020,15(11):e0241040. DOI: 10.1371/journal.pone.0241040.
    [13]
    YingM, YouD, ZhuX, et al. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions[J]. Redox Biol, 2021,46:102065. DOI: 10.1016/j.redox.2021.102065.
    [14]
    ChenL, ZhangZ, HoshinoA, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism[J]. Nat Metab, 2019,1:404-415.
    [15]
    SwamyM, PathakS, GrzesKM, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy[J]. Nat Immunol, 2016,17(6):712-720. DOI: 10.1038/ni.3439.
    [16]
    HewitsonTD, SmithER. A metabolic reprogramming of glycolysis and glutamine metabolism is a requisite for renal fibrogenesis-why and how?[J]. Front Physiol, 2021,12:645857. DOI: 10.3389/fphys.2021.645857.
    [17]
    PorterC, TompkinsRG, FinnertyCC, et al. The metabolic stress response to burn trauma: current understanding and therapies[J]. Lancet, 2016,388(10052):1417-1426. DOI: 10.1016/S0140-6736(16)31469-6.
    [18]
    孙勇, 彭曦. 重视烧伤创面愈合中的蛋白质营养问题[J]. 肠外与肠内营养, 2022, 29(2): 65-68. DOI: 10.16151/j.1007-810x.2022.02.001.
    [19]
    AltmanBJ, StineZE, DangCV. From Krebs to clinic: glutamine metabolism to cancer therapy[J]. Nat Rev Cancer, 2016,16(10):619-634. DOI: 10.1038/nrc.2016.71.
    [20]
    ScaliseM, PochiniL, GalluccioM, et al. Glutamine transport. From energy supply to sensing and beyond[J]. Biochim Biophys Acta, 2016,1857(8):1147-1157. DOI: 10.1016/j.bbabio.2016.03.006.
    [21]
    ScaliseM, PochiniL, GalluccioM, et al. Glutamine transport and mitochondrial metabolism in cancer cell growth[J]. Front Oncol, 2017,7:306. DOI: 10.3389/fonc.2017.00306.
    [22]
    KimJS, MartinMJ. REDOX REDUX? glutamine, catabolism, and the urea-to-creatinine ratio as a novel nutritional metric[J]. Crit Care Med, 2022,50(7):1156-1159. DOI: 10.1097/CCM.0000000000005520.
    [23]
    GongJ, JingL. Glutamine induces heat shock protein 70 expression via O-GlcNAc modification and subsequent increased expression and transcriptional activity of heat shock factor-1[J]. Minerva Anestesiol, 2011,77(5):488-495.
    [24]
    ZhouT, YangY, ChenQ, et al. Glutamine metabolism is essential for stemness of bone marrow mesenchymal stem cells and bone homeostasis[J]. Stem Cells Int, 2019,2019:8928934. DOI: 10.1155/2019/8928934.
    [25]
    NelsonVL, NguyenH, Garcìa-CañaverasJC, et al. PPARγ is a nexus controlling alternative activation of macrophages via glutamine metabolism[J]. Genes Dev, 2018,32(15/16):1035-1044. DOI: 10.1101/gad.312355.118.
    [26]
    LiuPS, WangH, LiX, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming[J]. Nat Immunol, 2017,18(9):985-994. DOI: 10.1038/ni.3796.
    [27]
    YangYJ, LiuMM, ZhangY, et al. Effectiveness and mechanism study of glutamine on alleviating hypermetabolism in burned rats[J]. Nutrition, 2020,79-80:110934. DOI: 10.1016/j.nut.2020.110934.
    [28]
    KimCS, DingX, AllmerothK, et al. Glutamine metabolism controls stem cell fate reversibility and long-term maintenance in the hair follicle[J]. Cell Metab, 2020,32(4):629-642.e8. DOI: 10.1016/j.cmet.2020.08.011.
    [29]
    YooHC, YuYC, SungY, et al. Glutamine reliance in cell metabolism[J]. Exp Mol Med, 2020,52(9):1496-1516. DOI: 10.1038/s12276-020-00504-8.
    [30]
    LiuJ, MarchaseRB, ChathamJC. Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels[J]. J Mol Cell Cardiol, 2007,42(1):177-185. DOI: 10.1016/j.yjmcc.2006.09.015.
    [31]
    RaoX, DuanX, MaoW, et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth[J]. Nat Commun, 2015,6:8468. DOI: 10.1038/ncomms9468.
    [32]
    KielerM, HofmannM, SchabbauerG. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization[J]. FEBS J, 2021, 288(12): 3694-3714. DOI: 10.1111/febs.15715
    [33]
    ShahAM, WangZ, MaJ. Glutamine metabolism and its role in immunity, a comprehensive review[J]. Animals (Basel), 2020, 10(2):326. DOI: 10.3390/ani10020326.
    [34]
    SunS, LiH, ChenJ, et al. Lactic acid: no longer an inert and end-product of glycolysis[J]. Physiology (Bethesda), 2017,32(6):453-463. DOI: 10.1152/physiol.00016.2017.
    [35]
    彭曦. 烧伤临床营养新视角[J].中华烧伤杂志,2019,35(5):321-325. DOI: 10.3760/cma.j.issn.1009-2587.2019.05.001.
    [36]
    HewJJ, ParungaoRJ, MooneyCP, et al. Low-protein diet accelerates wound healing in mice post-acute injury[J/OL]. Burns Trauma, 2021,9:tkab010[2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/34377708/. DOI: 10.1093/burnst/tkab010.
    [37]
    HoltB, GravesC, FaraklasI, et al. Compliance with nutrition support guidelines in acutely burned patients[J]. Burns, 2012,38(5):645-649. DOI: 10.1016/j.burns.2011.12.002.
    [38]
    RousseauAF, LosserMR, IchaiC, et al. ESPEN endorsed recommendations: nutritional therapy in major burns[J]. Clin Nutr, 2013,32(4):497-502. DOI: 10.1016/j.clnu.2013.02.012.
    [39]
    彭曦. 重视谷氨酰胺在烧伤临床的规范应用[J].肠外与肠内营养,2021,28(1):1-4. DOI: 10.16151/j.1007-810x.2021.01.001.
    [40]
    KaufmanT, LevinM, HurwitzDJ. The effect of topical hyperalimentation on wound healing rate and granulation tissue formation of experimental deep second degree burns in guinea-pigs[J]. Burns Incl Therm Inj, 1984,10(4):252-256. DOI: 10.1016/0305-4179(84)90003-2.
    [41]
    ViljantoJ, RaekallioJ. Local hyperalimentation of open wounds[J]. Br J Surg, 1976,63(6):427-430. DOI: 10.1002/bjs.1800630603.
    [42]
    BergerMM, BinzPA, RouxC, et al. Exudative glutamine losses contribute to high needs after burn injury[J]. JPEN J Parenter Enteral Nutr, 2022,46(4):782-788. DOI: 10.1002/jpen.2227.
    [43]
    JafariP, ThomasA, HaselbachD, et al. Trace element intakes should be revisited in burn nutrition protocols: a cohort study[J]. Clin Nutr, 2018,37(3):958-964. DOI: 10.1016/j.clnu.2017.03.028.
    [44]
    WilgusTA, DiPietroLA. Complex roles for VEGF in dermal wound healing[J]. J Invest Dermatol, 2012,132(2):493-494. DOI: 10.1038/jid.2011.343.
    [45]
    肖健, 张凡. 生长因子调控创面修复的进展与思考[J]. 中华烧伤与创面修复杂志, 2022, 38(7):610-615. DOI: 10.3760/cma.j.cn501225-20220416-00139.
    [46]
    吴炜, 彭曦. 肠道谷氨酰胺转运载体研究进展[J].中华烧伤杂志,2014,30(2):171-174. DOI: 10.3760/cma.j.issn.1009-2587.2014.02.017.
    [47]
    中华医学会烧伤外科学分会,《中华烧伤杂志》编辑委员会. 皮肤创面外用生长因子的临床指南[J].中华烧伤杂志,2017,33(12):721-727. DOI: 10.3760/cma.j.issn.1009-2587.2017.12.001.
    [48]
    HanCM, ChengB, WuP. Clinical guideline on topical growth factors for skin wounds[J]. Burns Trauma, 2020,8:tkaa035[2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/33015207/. DOI: 10.1093/burnst/tkaa035.
    [49]
    LiQ, ZhongX, YaoW, et al. Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity[J]. J Biol Chem, 2022,298(4):101753. DOI: 10.1016/j.jbc.2022.101753.
    [50]
    LiL, MengY, LiZ, et al. Discovery and development of small molecule modulators targeting glutamine metabolism[J]. Eur J Med Chem, 2019,163:215-242. DOI: 10.1016/j.ejmech.2018.11.066.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (3695) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return