Citation: | Peng X,Sun Y.Metabolic issues and nutritional strategies in burn wound repair[J].Chin J Burns Wounds,2022,38(8):707-713.DOI: 10.3760/cma.j.cn501225-20220708-00288. |
[1] |
许伟石, 刘琰, 乐嘉芬. 烧伤创面修复[M].2版.武汉:湖北科学技术出版社, 2013: 36-66.
|
[2] |
AbazariM, GhaffariA, RashidzadehH, et al. A systematic review on classification, identification, and healing process of burn wound healing[J]. Int J Low Extrem Wounds, 2022, 21(1): 18-30. DOI: 10.1177/1534734620924857.
|
[3] |
杨宗城. 烧伤治疗学[M].3版.北京: 人民卫生出版社, 2006: 180-211.
|
[4] |
ClarkA, ImranJ, MadniT, et al. Nutrition and metabolism in burn patients[J/OL]. Burns Trauma, 2017,5:11[2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/28428966/. DOI: 10.1186/s41038-017-0076-x.
|
[5] |
YarmushML, GolbergA. Bioengineering in wound healing: a systems approach[M]. New Jersey: World Scientific, 2017: 135-168.
|
[6] |
Arribas-LópezE, ZandN, OjoO, et al. The effect of amino acids on wound healing: a systematic review and meta-analysis on arginine and glutamine[J]. Nutrients, 2021, 13: 2498. DOI: 10.3390/nu13082498.
|
[7] |
ČomaM, FröhlichováL, UrbanL, et al. Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (inflammation, proliferation and maturation)[J]. Int J Mol Sci, 2021, 22(2):897.DOI: 10.3390/ijms22020897.
|
[8] |
彭曦. 重症烧伤患者的代谢分期及营养治疗策略[J].中华烧伤杂志,2021,37(9):805-810. DOI: 10.3760/cma.j.cn501120-20210802-00264.
|
[9] |
VinaikR, BarayanD, AugerC, et al. Regulation of glycolysis and the Warburg effect in wound healing[J]. JCI Insight, 2020, 5(17):e138949. DOI: 10.1172/jci.insight.138949.
|
[10] |
LiB, TangH, BianX, et al. Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through EGF/EGFR/ERK-mediated promotion of epidermal stem cell functions[J/OL]. Burns Trauma, 2021,9:tkab029[2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/34604395/. DOI: 10.1093/burnst/tkab029.
|
[11] |
WangCG, LouYT, TongMJ, et al. Asperosaponin Ⅵ promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling[J]. Acta Pharmacol Sin, 2018,39(3):393-404. DOI: 10.1038/aps.2017.161.
|
[12] |
RussoTA, BanuthA, NaderHB, et al. Altered shear stress on endothelial cells leads to remodeling of extracellular matrix and induction of angiogenesis[J]. PLoS One, 2020,15(11):e0241040. DOI: 10.1371/journal.pone.0241040.
|
[13] |
YingM, YouD, ZhuX, et al. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions[J]. Redox Biol, 2021,46:102065. DOI: 10.1016/j.redox.2021.102065.
|
[14] |
ChenL, ZhangZ, HoshinoA, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism[J]. Nat Metab, 2019,1:404-415.
|
[15] |
SwamyM, PathakS, GrzesKM, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy[J]. Nat Immunol, 2016,17(6):712-720. DOI: 10.1038/ni.3439.
|
[16] |
HewitsonTD, SmithER. A metabolic reprogramming of glycolysis and glutamine metabolism is a requisite for renal fibrogenesis-why and how?[J]. Front Physiol, 2021,12:645857. DOI: 10.3389/fphys.2021.645857.
|
[17] |
PorterC, TompkinsRG, FinnertyCC, et al. The metabolic stress response to burn trauma: current understanding and therapies[J]. Lancet, 2016,388(10052):1417-1426. DOI: 10.1016/S0140-6736(16)31469-6.
|
[18] |
孙勇, 彭曦. 重视烧伤创面愈合中的蛋白质营养问题[J]. 肠外与肠内营养, 2022, 29(2): 65-68. DOI: 10.16151/j.1007-810x.2022.02.001.
|
[19] |
AltmanBJ, StineZE, DangCV. From Krebs to clinic: glutamine metabolism to cancer therapy[J]. Nat Rev Cancer, 2016,16(10):619-634. DOI: 10.1038/nrc.2016.71.
|
[20] |
ScaliseM, PochiniL, GalluccioM, et al. Glutamine transport. From energy supply to sensing and beyond[J]. Biochim Biophys Acta, 2016,1857(8):1147-1157. DOI: 10.1016/j.bbabio.2016.03.006.
|
[21] |
ScaliseM, PochiniL, GalluccioM, et al. Glutamine transport and mitochondrial metabolism in cancer cell growth[J]. Front Oncol, 2017,7:306. DOI: 10.3389/fonc.2017.00306.
|
[22] |
KimJS, MartinMJ. REDOX REDUX? glutamine, catabolism, and the urea-to-creatinine ratio as a novel nutritional metric[J]. Crit Care Med, 2022,50(7):1156-1159. DOI: 10.1097/CCM.0000000000005520.
|
[23] |
GongJ, JingL. Glutamine induces heat shock protein 70 expression via O-GlcNAc modification and subsequent increased expression and transcriptional activity of heat shock factor-1[J]. Minerva Anestesiol, 2011,77(5):488-495.
|
[24] |
ZhouT, YangY, ChenQ, et al. Glutamine metabolism is essential for stemness of bone marrow mesenchymal stem cells and bone homeostasis[J]. Stem Cells Int, 2019,2019:8928934. DOI: 10.1155/2019/8928934.
|
[25] |
NelsonVL, NguyenH, Garcìa-CañaverasJC, et al. PPARγ is a nexus controlling alternative activation of macrophages via glutamine metabolism[J]. Genes Dev, 2018,32(15/16):1035-1044. DOI: 10.1101/gad.312355.118.
|
[26] |
LiuPS, WangH, LiX, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming[J]. Nat Immunol, 2017,18(9):985-994. DOI: 10.1038/ni.3796.
|
[27] |
YangYJ, LiuMM, ZhangY, et al. Effectiveness and mechanism study of glutamine on alleviating hypermetabolism in burned rats[J]. Nutrition, 2020,79-80:110934. DOI: 10.1016/j.nut.2020.110934.
|
[28] |
KimCS, DingX, AllmerothK, et al. Glutamine metabolism controls stem cell fate reversibility and long-term maintenance in the hair follicle[J]. Cell Metab, 2020,32(4):629-642.e8. DOI: 10.1016/j.cmet.2020.08.011.
|
[29] |
YooHC, YuYC, SungY, et al. Glutamine reliance in cell metabolism[J]. Exp Mol Med, 2020,52(9):1496-1516. DOI: 10.1038/s12276-020-00504-8.
|
[30] |
LiuJ, MarchaseRB, ChathamJC. Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels[J]. J Mol Cell Cardiol, 2007,42(1):177-185. DOI: 10.1016/j.yjmcc.2006.09.015.
|
[31] |
RaoX, DuanX, MaoW, et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth[J]. Nat Commun, 2015,6:8468. DOI: 10.1038/ncomms9468.
|
[32] |
KielerM, HofmannM, SchabbauerG. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization[J]. FEBS J, 2021, 288(12): 3694-3714. DOI: 10.1111/febs.15715
|
[33] |
ShahAM, WangZ, MaJ. Glutamine metabolism and its role in immunity, a comprehensive review[J]. Animals (Basel), 2020, 10(2):326. DOI: 10.3390/ani10020326.
|
[34] |
SunS, LiH, ChenJ, et al. Lactic acid: no longer an inert and end-product of glycolysis[J]. Physiology (Bethesda), 2017,32(6):453-463. DOI: 10.1152/physiol.00016.2017.
|
[35] |
彭曦. 烧伤临床营养新视角[J].中华烧伤杂志,2019,35(5):321-325. DOI: 10.3760/cma.j.issn.1009-2587.2019.05.001.
|
[36] |
HewJJ, ParungaoRJ, MooneyCP, et al. Low-protein diet accelerates wound healing in mice post-acute injury[J/OL]. Burns Trauma, 2021,9:tkab010[2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/34377708/. DOI: 10.1093/burnst/tkab010.
|
[37] |
HoltB, GravesC, FaraklasI, et al. Compliance with nutrition support guidelines in acutely burned patients[J]. Burns, 2012,38(5):645-649. DOI: 10.1016/j.burns.2011.12.002.
|
[38] |
RousseauAF, LosserMR, IchaiC, et al. ESPEN endorsed recommendations: nutritional therapy in major burns[J]. Clin Nutr, 2013,32(4):497-502. DOI: 10.1016/j.clnu.2013.02.012.
|
[39] |
彭曦. 重视谷氨酰胺在烧伤临床的规范应用[J].肠外与肠内营养,2021,28(1):1-4. DOI: 10.16151/j.1007-810x.2021.01.001.
|
[40] |
KaufmanT, LevinM, HurwitzDJ. The effect of topical hyperalimentation on wound healing rate and granulation tissue formation of experimental deep second degree burns in guinea-pigs[J]. Burns Incl Therm Inj, 1984,10(4):252-256. DOI: 10.1016/0305-4179(84)90003-2.
|
[41] |
ViljantoJ, RaekallioJ. Local hyperalimentation of open wounds[J]. Br J Surg, 1976,63(6):427-430. DOI: 10.1002/bjs.1800630603.
|
[42] |
BergerMM, BinzPA, RouxC, et al. Exudative glutamine losses contribute to high needs after burn injury[J]. JPEN J Parenter Enteral Nutr, 2022,46(4):782-788. DOI: 10.1002/jpen.2227.
|
[43] |
JafariP, ThomasA, HaselbachD, et al. Trace element intakes should be revisited in burn nutrition protocols: a cohort study[J]. Clin Nutr, 2018,37(3):958-964. DOI: 10.1016/j.clnu.2017.03.028.
|
[44] |
WilgusTA, DiPietroLA. Complex roles for VEGF in dermal wound healing[J]. J Invest Dermatol, 2012,132(2):493-494. DOI: 10.1038/jid.2011.343.
|
[45] |
肖健, 张凡. 生长因子调控创面修复的进展与思考[J]. 中华烧伤与创面修复杂志, 2022, 38(7):610-615. DOI: 10.3760/cma.j.cn501225-20220416-00139.
|
[46] |
吴炜, 彭曦. 肠道谷氨酰胺转运载体研究进展[J].中华烧伤杂志,2014,30(2):171-174. DOI: 10.3760/cma.j.issn.1009-2587.2014.02.017.
|
[47] |
中华医学会烧伤外科学分会,《中华烧伤杂志》编辑委员会. 皮肤创面外用生长因子的临床指南[J].中华烧伤杂志,2017,33(12):721-727. DOI: 10.3760/cma.j.issn.1009-2587.2017.12.001.
|
[48] |
HanCM, ChengB, WuP. Clinical guideline on topical growth factors for skin wounds[J]. Burns Trauma, 2020,8:tkaa035[2022-07-20]. https://pubmed.ncbi.nlm.nih.gov/33015207/. DOI: 10.1093/burnst/tkaa035.
|
[49] |
LiQ, ZhongX, YaoW, et al. Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity[J]. J Biol Chem, 2022,298(4):101753. DOI: 10.1016/j.jbc.2022.101753.
|
[50] |
LiL, MengY, LiZ, et al. Discovery and development of small molecule modulators targeting glutamine metabolism[J]. Eur J Med Chem, 2019,163:215-242. DOI: 10.1016/j.ejmech.2018.11.066.
|
[1] | Yin Shanqing, Zhu Feng, Huang Yaopeng, Pan Jiadong, Xiao Dongchao, Liu Linhai, Li Xueyuan, Wang Xin. Effects of thinned anterolateral thigh perforator flaps combined with finger splitting and webplasty in sequential treatment of degloving destructive wound of total hand[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(11): 1052-1058. doi: 10.3760/cma.j.cn501225-20240723-00275 |
[2] | Wu Haibo, Jin Guangzhe, Li Jin, Zhang Yan, Wang Kai, Wang Qiang, Tang Xiaoqiang, Ju Jihui, Hou Ruixing. Effects of the first dorsal metatarsal artery terminal branch flaps in repairing skin and soft tissue defects of fingers[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(10): 963-970. doi: 10.3760/cma.j.cn501225-20231226-00271 |
[3] | Zhang Hairui, Zhang Dongliang, Yan Xiaohui, Zhang Xiaopeng, Shang Xuliang, Meng Yanbin. Clinical effect of free posterior interosseous artery perforator flap carrying superficial vein for reconstructing severe perioral scar hyperplasia and contracture[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(12): 1175-1179. doi: 10.3760/cma.j.cn501225-20231031-00162 |
[4] | Di Haiping, Xing Peipeng, Zheng Junjie, Ma Chao, Huang Wanxin, Liu Lei, Xue Jidong, Guo Haina, Yang Gaoyuan, Xia Chengde, Zhou Chao. Curative effects of ultrathin anterolateral femoral flap in one-stage split-finger repair of palmar combined with multiple finger wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(9): 835-841. doi: 10.3760/cma.j.cn501225-20221129-00514 |
[5] | Zhang Tao, Cheng Junnan, Yang Lin, Huang Yongtao, Gao Qinfeng, Sun Fengwen, Liu Zhijin, Liu Shengzhe, Yang Chengpeng, Cao Yang, Ju Jihui. Curative effects of the superficial peroneal artery perforator flap carrying multiple perforators in repairing hand and foot wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(3): 234-240. doi: 10.3760/cma.j.cn501225-20220723-00305 |
[6] | Zhang Tao, Cheng Junnan, Yang Lin, Sun Fengwen, Gao Qinfeng, Huang Yongtao, Yang Chengpeng, Cao Yang, Liu Zhijin, Ju Jihui. Effects of bilobated superficial peroneal artery perforator flap in repairing two adjacent wounds of the fingers[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(7): 655-661. doi: 10.3760/cma.j.cn501225-20220930-00428 |
[7] | Cheng Heyun, Ju Jihui, Zhao Qiang, Liu Shengzhe, Zhang Guangliang, Zhang Tao, Wang Benyuan, Guo Quanwei, Liu Shuang. Effects of free superficial peroneal artery perforator flap in repairing small and medium-sized thermal crush injury wounds in the hand[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(6): 546-551. doi: 10.3760/cma.j.cn501225-20220623-00256 |
[8] | Song Dajiang, Li Zan, Zhou Xiao, Zhang Yixin, Zhou Bo, Lyu Chunliu, Tang Yuanyuan, Yi Liang, Luo Zhenhua. Transplantation of bilateral superficial inferior epigastric artery perforator flap for breast reconstruction in a patient with unilateral breast cancer[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 964-967. doi: 10.3760/cma.j.cn501225-20220306-00047 |
[9] | Zhang Yujun, Ju Jihui, Zhao Qiang, Wang Benyuan, Cheng Heyun, Wang Guiyang, Hou Ruixing. Clinical effects of proximal ulnar artery perforator flap combined with iliac bone graft in the reconstruction of subtotal thumb or finger defects[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 959-963. doi: 10.3760/cma.j.cn501120-20210707-00238 |
[10] | Xiong Sheng, Ju Jihui, Jin Guangzhe, Zhu Congkun, Zhang Guangliang, Tang Linfeng, Zhou Guangliang. Multiple free homologous superficial peroneal artery perforator flaps of crus for repair of multiple hand wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(9): 655-660. doi: 10.3760/cma.j.issn.1009-2587.2019.09.003 |
[13] | Li Junjie, Gao Zimian, Gao Weiyang, Li Zhefeng. Effects of surgical delay procedure on the survival of perforator flap with three angiosomes in rat and its mechanism[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(4): 337-343. doi: 10.3760/cma.j.issn.1009-2587.2014.04.013 |
[14] | Li Gang, Li Xiaobing, Liu Zijian, Zhang Jingqi, Liu Guangjing. Effects of improved scapula flap in repairing refractory wound[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(3): 219-222. doi: 10.3760/cma.j.issn.1009-2587.2014.03.009 |
[16] | ZHENG Zhao, HU Da- hai, ZHU Xiong-xiang, HAN Jun-tao, WANG Yao-jun, LI Na, HAN Fu, XU Ming-da. Microsurgical repair of skin and soft tissue defects on head, face, and neck[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2010, 26(4): 263-267. doi: 10.3760/cma.j.issn.1009-2587.2010.04.005 |
[17] | ZHENG Zhao, HU Da-hai, XU Ming-da, ZHU Xiong-xiang, HAN Jun-tao, DONG Mao-long, TAO Ke, WANG Hong-tao, XIE Song-tao, JIANC Chu-yun, CHEN Bi. Surgical therapy for massive deep skin and soft tissue injuries[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(1): 11-14. doi: 10.3760/cma.j.issn.1009-2587.2009.01.006 |
[18] | More stress should be laid on the application of microsurgical techniques in the repair of destructive burns and trau-mas, and intractable wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(6): 404-406. doi: 10.3760/cma.j.issn.1009-2587.2009.06.002 |
[20] | WANG Qiang, ZHAO Yu-ling, CAO Quan-bin, HU Fu-xing, ZHU Dian-yong. Repair of massive soft tissue defect in upper and lower extremities with free transmidline bi-lobed scapular skin flap[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2006, 22(6): 437-439. |