Citation: | Luo GX,Deng J.In situ monitoring and regulation of local reactive oxygen species levels to promote wound repair[J].Chin J Burns Wounds,2022,38(10):899-904.DOI: 10.3760/cma.j.cn501225-20220720-00299. |
[1] |
BullRH, StainesKL, CollarteAJ, et al. Measuring progress to healing: a challenge and an opportunity[J]. Int Wound J,2022,19(4):734-740.DOI: 10.1111/iwj.13669.
|
[2] |
BowersS, FrancoE. Chronic wounds: evaluation and management[J]. Am Fam Physician,2020,101(3):159-166.
|
[3] |
朱萌, 陈禹州, 区锦钊, 等. 水溶性壳聚糖水凝胶对糖尿病小鼠感染全层皮肤缺损创面的作用及其机制[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 923-931. DOI: 10.3760/cma.j.cn501225-20220507-00175.
|
[4] |
张清荣, 陈长友, 徐娜, 等. 载P311微球的温敏壳聚糖水凝胶对大鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 914-922. DOI: 10.3760/cma.j.cn501225-20220414-00135.
|
[5] |
宋薇, 李曌, 朱世钧, 等. 含人脐血来源富血小板血浆的三维生物打印墨水在裸鼠全层皮肤缺损治疗中的应用[J]. 中华烧伤与创面修复杂志, 2022, 38(10): 905-913. DOI: 10.3760/cma.j.cn501225-20220618-00243.
|
[6] |
El AyadiA,WangCZ,ZhangM,et al.Metal chelation reduces skin epithelial inflammation and rescues epithelial cells from toxicity due to thermal injury in a rat model[J/OL].Burns Trauma,2020,8:tkaa024[2022-07-20].https://pubmed.ncbi.nlm.nih.gov/3303377/.DOI: 10.1093/burnst/tkaa024.
|
[7] |
卢毅飞, 邓君, 王竞, 等. 乳酸乳球菌温敏水凝胶对糖尿病小鼠全层皮肤缺损创面愈合的影响及其机制[J]. 中华烧伤杂志,2020,36 (12): 1117-1129. DOI: 10.3760/cma.j.cn501120-20201004-00427.
|
[8] |
WallaceHA, BasehoreBM, ZitoPM. Wound healing phases[M/OL]. Treasure Island (FL): StatPearls Publishing,2022[2022-09-20]. https://www.ncbi.nlm.nih.gov/books/NBK470443/. https://www.ncbi.nlm.nih.gov/books/NBK470443/
|
[9] |
ChenJL, JayachandranM, XuBJ, et al. Sea bass (Lateolabrax maculatus) accelerates wound healing: a transition from inflammation to proliferation[J]. J Ethnopharmacol,2019,236:263-276.DOI: 10.1016/j.jep.2019.03.012.
|
[10] |
DouganM, DranoffG, DouganSK. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation[J]. Immunity,2019,50(4):796-811.DOI: 10.1016/j.immuni.2019.03.022.
|
[11] |
ChelombitkoMA. Role of reactive oxygen species in inflammation: a minireview[J]. Moscow Univ Biol Sci Bull,2018,73(4):199-202.DOI: https://doi.org/10.3103/S009639251804003X.
|
[12] |
DunnillC, PattonT, BrennanJ, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process[J]. Int Wound J,2017,14(1):89-96.DOI: 10.1111/iwj.12557.
|
[13] |
Comino-SanzIM, López-FrancoMD, CastroB, et al. The role of antioxidants on wound healing: a review of the current evidence[J]. J Clin Med,2021,10(16):3558.DOI: 10.3390/jcm10163558.
|
[14] |
戚欣欣,杨云稀,孙炳伟.严重烧伤患者早期外周血中性粒细胞趋化功能变化及影响因素[J].中华烧伤杂志,2020,36(3): 204-209.DOI: 10.3760/cma.j.cn501120-20190801-00329.
|
[15] |
王洪涛, 韩军涛, 胡大海.炎症反应在增生性瘢痕和瘢痕疙瘩形成中的作用及其机制研究进展[J].中华烧伤杂志,2021,37(5):490-494.DOI: 10.3760/cma.j.cn501120-20200310-00143.
|
[16] |
Viaña-MendietaP, SánchezML, BenavidesJ. Rational selection of bioactive principles for wound healing applications: growth factors and antioxidants[J]. Int Wound J,2022,19(1):100-113.DOI: 10.1111/iwj.13602.
|
[17] |
IncalzaMA, D'OriaR, NatalicchioA, et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases[J]. Vascul Pharmacol,2018,100:1-19.DOI: 10.1016/j.vph.2017.05.005.
|
[18] |
DorringtonMG, FraserIDC. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration[J]. Front Immunol,2019,10:705.DOI: 10.3389/fimmu.2019.00705.
|
[19] |
SuLJ, ZhangJH, GomezH, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxid Med Cell Longev,2019,2019:5080843.DOI: 10.1155/2019/5080843.
|
[20] |
PowersSK, DeminiceR, OzdemirM, et al. Exercise-induced oxidative stress: friend or foe?[J]. J Sport Health Sci,2020,9(5):415-425.DOI: 10.1016/j.jshs.2020.04.001.
|
[21] |
KiranKR, DeepikaVB, SwathyPS, et al. ROS-dependent DNA damage and repair during germination of NaCl primed seeds[J]. J Photochem Photobiol B,2020,213:112050.DOI: 10.1016/j.jphotobiol.2020.112050.
|
[22] |
DengLL, DuCZ, SongPY, et al. The role of oxidative stress and antioxidants in diabetic wound healing[J]. Oxid Med Cell Longev,2021,2021:8852759.DOI: 10.1155/2021/8852759.
|
[23] |
WuLL, SedgwickAC, SunXL, et al. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species[J]. Acc Chem Res,2019,52(9):2582-2597.DOI: 10.1021/acs.accounts.9b00302.
|
[24] |
YanKC, SedgwickAC, ZangY, et al. Sensors, imaging agents, and theranostics to help understand and treat reactive oxygen species related diseases[J]. Small Methods, 2019,3(7):1900013.DOI: 10.1002/smtd.201900013.
|
[25] |
YaoMY, LuYF, ShiL, et al. A ROS-responsive, self-immolative and self-reporting hydrogen sulfide donor with multiple biological activities for the treatment of myocardial infarction[J]. Bioact Mater,2021,9:168-182.DOI: 10.1016/j.bioactmat.2021.07.011.
|
[26] |
CuiYX, DuanW, JinY, et al. Graphene quantum dot-decorated luminescent porous silicon dressing for theranostics of diabetic wounds[J]. Acta Biomater,2021,131:544-554.DOI: 10.1016/j.actbio.2021.07.018.
|
[27] |
DacyA, HaiderN, DavisK, et al. Design and evaluation of an imager for assessing wound inflammatory responses and bioburden in a pig model[J]. J Biomed Opt,2019,25(3):1-9.DOI: 10.1117/1.JBO.25.3.032002.
|
[28] |
WangH, YuDQ, LiB, et al. Ultrasensitive magnetic resonance imaging of systemic reactive oxygen species in vivo for early diagnosis of sepsis using activatable nanoprobes[J]. Chem Sci,2019,10(13):3770-3778.DOI: 10.1039/c8sc04961k.
|
[29] |
LiC, LiS, ZhaoJ, et al. Ultrasmall magneto-chiral cobalt hydroxide nanoparticles enable dynamic detection of reactive oxygen species in vivo [J]. J Am Chem Soc,2022,144(4):1580-1588.DOI: 10.1021/jacs.1c09986.
|
[30] |
LiXL, LiuY, QiXW, et al. Sensitive activatable nanoprobes for real-time ratiometric magnetic resonance imaging of reactive oxygen species and ameliorating inflammation in vivo[J]. Adv Mater (Weinh),2022,34(19):e2109004.DOI: 10.1002/adma.202109004.
|
[31] |
ZengY, DouTT, MaL, et al. Biomedical photoacoustic imaging for molecular detection and disease diagnosis: "always-on" and "turn-on" probes[J]. Adv Sci (Weinh),2022,9(25):e2202384.DOI: 10.1002/advs.202202384.
|
[32] |
LiJY, HanFX, MaJJ, et al. Targeting endogenous hydrogen peroxide at bone defects promotes bone repair[J]. Adv Funct Mater,2022,32(10):2111208.DOI: 10.1002/adfm.202111208.
|
[33] |
ZhangCY, WangX, DuJF, et al. Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment[J]. Adv Sci (Weinh),2020,8(3):2002797.DOI: 10.1002/advs.202002797.
|
[34] |
ZhangL, YangQC, WangS, et al. Engineering multienzyme-mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity[J]. Adv Mater,2022,34(13):e2108174.DOI: 10.1002/adma.202108174.
|
[35] |
Toro-PérezJ, RodrigoR. Contribution of oxidative stress in the mechanisms of postoperative complications and multiple organ dysfunction syndrome[J]. Redox Rep,2021,26(1):35-44.DOI: 10.1080/13510002.2021.1891808.
|
[36] |
LiangMM, YanXY. Nanozymes: from new concepts, mechanisms, and standards to applications[J]. Acc Chem Res,2019,52(8):2190-2200.DOI: 10.1021/acs.accounts.9b00140.
|
[37] |
DengLL, DuCZ, SongPY, et al. The role of oxidative stress and antioxidants in diabetic wound healing[J]. Oxid Med Cell Longev,2021,2021:8852759.DOI: 10.1155/2021/8852759.
|
[38] |
LiuJF, WeiBB, CheCC, et al. Enhanced stability of manganese superoxide dismutase by amino acid replacement designed via molecular dynamics simulation[J]. Int J Biol Macromol,2019,128:297-303.DOI: 10.1016/j.ijbiomac.2019.01.126.
|
[39] |
ZengZY, HeX, LiCY, et al. Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease[J]. Biomaterials,2021,271:120753.DOI: 10.1016/j.biomaterials.2021.120753.
|
[40] |
KumarS, BhardwajVK, GuleriaS, et al. Improving the catalytic efficiency and dimeric stability of Cu,Zn superoxide dismutase by combining structure-guided consensus approach with site-directed mutagenesis[J]. Biochim Biophys Acta Bioenerg,2022,1863(1):148505.DOI: 10.1016/j.bbabio.2021.148505.
|
[41] |
ChangGZ, DangQF, LiuCS, et al. Carboxymethyl chitosan and carboxymethyl cellulose based self-healing hydrogel for accelerating diabetic wound healing[J]. Carbohydr Polym,2022,292:119687.DOI: 10.1016/j.carbpol.2022.119687.
|
[42] |
PetronekMS, StolwijkJM, MurraySD, et al. Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy[J]. Redox Biol,2021,42:101864.DOI: 10.1016/j.redox.2021.101864.
|
[43] |
YuXJ, LiuCY, YangLR, et al. Study on the antioxidant and anticancer activities of Sorbus pohuashanensis (Hance) Hedl flavonoids in vitro and its screen of small molecule active components[J]. Nutr Cancer,2022,74(6):2243-2253.DOI: 10.1080/01635581.2021.1998560.
|
[44] |
LuxPE, FuchsL, Wiedmaier-CzernyN, et al. Oxidative stability of tocochromanols, carotenoids, and fatty acids in maize (Zea mays L.) porridges with varying phytate concentrations during cooking and in vitro digestion[J]. Food Chem,2022,378:132053.DOI: 10.1016/j.foodchem.2022.132053.
|
[45] |
GuoYX, SunQ, WuFG, et al. Polyphenol-containing nanoparticles: synthesis, properties, and therapeutic delivery[J]. Adv Mater,2021,33(22):e2007356.DOI: 10.1002/adma.202007356.
|
[46] |
LiuTF, XiaoBW, XiangF, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases[J]. Nat Commun,2020,11(1):2788.DOI: 10.1038/s41467-020-16544-7.
|
[47] |
LinSM, WadeJD, LiuSP. De novo design of flavonoid-based mimetics of cationic antimicrobial peptides: discovery, development, and applications[J]. Acc Chem Res,2021,54(1):104-119.DOI: 10.1021/acs.accounts.0c00550.
|
[48] |
SridharK, InbarajBS, ChenBH. Recent advances on nanoparticle based strategies for improving carotenoid stability and biological activity[J]. Antioxidants (Basel),2021,10(5):713.DOI: 10.3390/antiox10050713.
|
[49] |
WangY, LiCY, WanY, et al. Quercetin-loaded ceria nanocomposite potentiate dual-directional immunoregulation via macrophage polarization against periodontal inflammation[J]. Small,2021,17(41):e2101505.DOI: 10.1002/smll.202101505.
|
[50] |
MiaoRM, JinFQ, WangZG, et al. Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols[J]. Biomaterials,2022,281:121373.DOI: 10.1016/j.biomaterials.2022.121373.
|
[51] |
YangBW, ChenY, ShiJL. Reactive oxygen species (ROS)-based nanomedicine[J]. Chem Rev,2019,119(8):4881-4985.DOI: 10.1021/acs.chemrev.8b00626.
|
[52] |
MuJ, LiCX, ShiY, et al. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury[J]. Nat Commun,2022,13(1):2513.DOI: 10.1038/s41467-022-29772-w.
|
[53] |
XuHH, LvY, QiuDX, et al. An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring[J]. Nanoscale,2019,11(4):1570-1578.DOI: 10.1039/c8nr08589g.
|
[54] |
XuZ, LiuYJ, MaR, et al. Thermosensitive hydrogel incorporating prussian blue nanoparticles promotes diabetic wound healing via ROS scavenging and mitochondrial function restoration[J]. ACS Appl Mater Interfaces,2022,14(12):14059-14071.DOI: 10.1021/acsami.1c24569.
|
[55] |
HanSI, LeeSW, ChoMG, et al. Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection[J]. Adv Mater,2020,32(31):e2001566.DOI: 10.1002/adma.202001566.
|
[56] |
XiJQ, WeiG, AnLF, et al. Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy[J]. Nano Lett,2019,19(11):7645-7654.DOI: 10.1021/acs.nanolett.9b02242.
|
[57] |
PengY, HeDF, GeX, et al. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition[J]. Bioact Mater,2021,6(10):3109-3124.DOI: 10.1016/j.bioactmat.2021.02.006.
|
[58] |
彭源,卢毅飞,邓君,等. 氧化铜纳米酶对糖尿病小鼠全层皮肤缺损创面修复的作用及其机制[J].中华烧伤杂志,2020,36(12):1139-1148.DOI: 10.3760/cma.j.cn501120-20200929-00426.
|